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Objectives: To describe the susceptibility of Escherichia coli to medically important 37 

antibiotics, collected over four periods (2004-2006, 2008-2009, 2013-2014, 2017-2018), 38 

from food-producing animals at slaughter. 39 

Methods: Intestinal contents from cattle, pigs, and broilers were randomly sampled (5-6 40 

countries/host; ≥4 abattoirs/country; 1 sample/animal/farm) for isolation of E.coli; 41 

antimicrobial susceptibilities were centrally determined by CLSI agar dilution. Clinical 42 

breakpoints (CLSI) and epidemiological cut-off values (EUCAST) were applied for data 43 

interpretation.  44 

Results: Totally 10,613 E.coli strains were recovered. In broilers, resistance 45 

percentages were the lowest (P≤0.01) in the latest time period. A significant decrease in 46 

MDR over time was also observed for broilers and a tendency for a decrease for pigs. 47 

Resistance to meropenem and tigecycline was absent, and resistance to azithromycin 48 

was 0.2-2.0%. Also low resistance to third-generation cephalosporins (1.1-1.6%) was 49 

detected in broilers. Resistance to colistin varied between 0.1-4.8%. E.coli from broilers 50 

showed high resistance to ciprofloxacin (7.3-23.3%) whereas for cattle and pigs this 51 

was 0.2-2.5%. Low/moderate resistance to chloramphenicol (9.3-21.3%) and 52 

gentamicin (0.9-7.0%) was observed in pigs and broilers. The highest resistance was 53 

noted for ampicillin (32.7-65.2%), tetracycline (41.3-67.5%), trimethoprim (32.1-36.2%), 54 

and trimethoprim/sulfamethoxazole (27.5-49.7%) from pigs and broilers, with marked 55 

country differences.  MDR peaked in pigs and broilers with 24 and 26 phenotypes, with 56 

21.9-26.2% and 18.7-34.1% resistance, respectively.  57 

Conclusions: In this pan-EU survey antibiotic susceptibility of commensal E.coli varied 58 

largely between antibiotics, animal species, and countries. Resistance to critically 59 
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important antibiotics for human medicine was absent or low, except for ciprofloxacin in 60 

broilers, and ampicillin in pigs and broilers. 61 

 62 

Introduction 63 

During the last decades, antimicrobial resistance (AMR) has emerged globally, and 64 

poses a significant threat to animal and human health.1,2 The potential for transfer of 65 

AMR from enteric bacteria in animals to humans is a global public health concern.3 The 66 

AMR reservoir of enteric bacteria from livestock has been increasingly investigated for 67 

its potential to transfer AMR to humans via direct contact, the environment or 68 

contaminated food.4 These reservoirs are clearly interconnected, but the extent of 69 

transmission between these reservoirs remains uncertain.5,6,7 AMR is problematic not 70 

only for pathogenic bacteria but also for the commensal intestinal microbiota. The WHO 71 

has identified Enterobacterales to be of critical importance, due to the dissemination of 72 

ESBLs, cephalosporinase (AmpC), and carbapenemases.8,9 From a list of antimicrobial-73 

resistant “priority pathogens” that pose a major threat to public health and for which 74 

there is an urgent need for new treatments, WHO categorized Enterobacterales as a 75 

priority 1 (critical) pathogen.10 Additionally, emerging resistance determinants such as 76 

mobile colistin resistance have led to increased numbers of reports of multi-drug 77 

resistant isolates.11,12 Various international organizations have addressed the issue of 78 

AMR. For instance, the EU has set up an EU-wide AMR control strategy by specific 79 

action plans.13 Among the Enterobacterales, Escherichia coli is commonly used in 80 

monitoring programmes as an indicator of the Gram-negative gut microbiota.3 Livestock 81 

carries E. coli as a commensal organism in their intestine and thus can be regarded as 82 

a potential reservoir of acquired resistance determinants.  83 
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To address AMR, several European countries have established national 84 

monitoring in healthy production animals around the turn of the century, e.g., Denmark 85 

(DANMAP),14 Netherlands (MARAN),15 Norway (NORM-VET),16 and Sweden 86 

(SVARM).17 Importantly, since the advent of this century the European Food Safety 87 

Authority (EFSA) analyses and reports annually or biannually information on AMR in 88 

zoonotic and indicator bacteria from food animals submitted by various EU Member 89 

States.18 These data are further used for investigations of associations between 90 

antibiotic consumption and AMR.3 Furthermore, the veterinary pharmaceutical industry 91 

has conducted periodic monitoring of zoonotic and commensal bacteria from European 92 

countries through the Executive Animal Health Study Centre (CEESA).19 Additionally, 93 

multiple one-off studies on AMR and mechanisms of resistance of E. coli are 94 

available.20-23 95 

The present study is part of the ongoing European Antimicrobial Susceptibility 96 

Surveillance in Animals (EASSA) programme, which is coordinated by CEESA. This 97 

pan-EU programme collects intestinal bacteria from healthy food animals sampled at 98 

slaughter employing a protocol with uniform procedures of sampling and bacterial 99 

isolation. MICs to a panel of antimicrobials commonly used in human medicine were 100 

determined in a central laboratory.19 This allows comparison of results across time 101 

periods, animal species and countries,24 which is crucial.25,26 The organisms of interest 102 

are zoonotic Salmonella and Campylobacter species, and commensal E. coli and 103 

Enterococcus species as indicator organisms. This paper provides antimicrobial 104 

susceptibility data and trend analysis over time for E. coli collected from beef cattle, 105 

slaughter pigs, and broiler chickens between 2004 and 2018 from four EASSA studies 106 

(2004-2005; 2008-2009; 2013-2014; 2017-2018). Detailed results of the initial sampling 107 



 

5 
 

periods (1999-2003) have been reported previously.27-29 Resistance mechanisms of E. 108 

coli of the EASSA 2004-2014 collections such as characterization of the ESBL, AmpC 109 

and mcr genes of ESBL/AmpC-producing or colistin-resistant strains, respectively, have 110 

been published elsewhere.12,30,31 For EASSA 2017-2018, mcr presence of colistin-111 

resistant isolates is included in this paper. 112 

 113 

Materials and methods 114 

Sampling procedures, microbiological isolation and identification  115 

The design of the EASSA programme including collection criteria such as animal 116 

population and sampling procedures were described previously.27,32 In brief, samples 117 

of intestinal contents of healthy animals at slaughter were randomly collected by 118 

participating countries from 4 to 24 abattoirs per country in 5 or 6 EU countries per 119 

host species (see Tables S1-4 for the countries per host). From each herd or flock, 120 

one animal was randomly selected for sampling. The number of samples was typically 121 

between 100 or 200 samples per host and per country. Only one E. coli isolate was 122 

retained from each sample. Isolation and phenotypic identification of E. coli was 123 

performed using standardized procedures in each national microbiology laboratory.28 124 

From the 2013-14 survey onwards, E. coli identification was confirmed by MALDI-TOF 125 

MS (MALDI-Biotyper, Bruker Daltonics GmbH, Bremen, Germany). Cultures were 126 

stored in a central laboratory at -70oC in growth medium with glycerol as cryo-127 

preservative until testing. 128 

Antimicrobial susceptibility testing 129 

Agar dilution MIC testing was performed according to CLSI VET01-A4 (or preceding) 130 

standards.33 Up to 15 antimicrobials/antimicrobial combinations comprising 10 131 

antimicrobial classes as classified to their importance for human medicine by WHO8 132 
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and recommended by the European Commission34 and EFSA35, were tested: 11 133 

Critically Important Antibiotics (CIAs) i.e., ampicillin, azithromycin, ciprofloxacin, 134 

cefotaxime, ceftazidime, cefepime, colistin, gentamicin, meropenem, nalidixic acid, 135 

tigecycline, and four Highly Important Antibiotics, chloramphenicol, trimethoprim, 136 

trimethoprim/sulfamethoxazole (TS) and tetracycline. Azithromycin, ceftazidime, and 137 

trimethoprim were only included in the fourth survey; meropenem only in the last two 138 

surveys; nalidixic acid and tigecycline in the last three surveys. E. coli ATCC 25922 139 

was used as reference strain for quality assurance in each MIC run. MDR of an isolate 140 

was defined as clinical resistance to at least one agent in three or more antimicrobial 141 

classes.11 Isolates conferring non-wild type (NWT) and resistance to both cefotaxime 142 

and ciprofloxacin were analysed as well. 143 

Detection of mcr genes 144 

Colistin-resistant E. coli isolates (MIC >2 mg/L)36 were PCR-screened for the presence 145 

of mcr-1 to mcr-10 genes using two multiplex PCR primers previously described.37-39 146 

Data analyses 147 

Epidemiological cut-off values (ECOFFs) and clinical breakpoints (CBPs) were applied 148 

as interpretive criteria for the MIC data. Percentage of clinical resistance, percentage 149 

of NWT, MIC50 and MIC90 values were determined for each antimicrobial, host species 150 

and country. Clinical resistance was determined according to M100-S30 breakpoints,40 151 

except that for tigecycline which was interpreted according to EUCAST guidelines.36 152 

NWT population was based on ECOFFs.35,40 CLSI clinical breakpoints and ECOFFs 153 

are identical for chloramphenicol, colistin, nalidixic acid, and tetracycline; ECOFFs 154 

have not been set for TS. For the other antimicrobials, breakpoints and ECOFFs differ 155 

at least by one doubling dilution. Resistance breakpoints and ECOFFs are presented 156 
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in Table 1 as well as Tables S1-4 available as Supplementary data. The terms to 157 

describe the AMR percentages are “rare” (<0.1%), “very low” (0.1-1.0%), “low” (1-158 

10%), “moderate” (10-20%), “high” (20-50%), “very high” (50-70%), and “extremely 159 

high” (>70%) and correspond to the criteria applied by EFSA/ECDC.18 160 

Two-sided ² tests were used for an overall comparison of resistance 161 

percentages. In case of a significant difference, pairwise comparisons of resistance 162 

prevalence between countries of each animal species and between animal species 163 

were used. Two-sided ² tests were used to compare the time period 2017-18 with the 164 

other time periods.  In all tests, a P value of ≤0.05 was considered as significant. 165 

 166 

Results  167 

A total of 10,613 E. coli isolates were recovered in the four EASSA surveys; the 168 

numbers per survey amounted to 1496, 2712, 2993, and 3412, respectively. The total 169 

number of E. coli isolates per host and survey varied between 404 and 1207. The 170 

results are summarized in Table 1; the results for the individual countries are 171 

presented for each host species in Tables S1-4 available as Supplementary data.  172 

Generally, the occurrence of resistance and NWT was markedly lower among 173 

cattle isolates than among pig and broiler isolates (Table 1; Figure 1). AMR 174 

proportions were highest against ampicillin, tetracycline, trimethoprim and TS, ranging 175 

from 3.3–65.3, 7.0–67.5, 0.5–58.2 and 2.8–49.7%, respectively, across all hosts. 176 

Significant differences of resistance proportions of above five 177 

antimicrobials/antimicrobial combinations were frequently observed among the three 178 

hosts. Clinical resistance to the quinolones in broilers was low to high (7.3-23.3%) for 179 

ciprofloxacin and very high (51.8-58.1%) for nalidixic acid; NWT proportions were very 180 
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high for both compounds. In contrast, in cattle and pigs resistance proportions to these 181 

two antimicrobials were very low or low, whereas the ciprofloxacin NWT proportions 182 

were slightly higher, albeit low. Resistance proportions to chloramphenicol were 183 

primarily moderate for pigs and broilers (14.2-21.3 and 9.3-18.0%), whereas 184 

resistance to gentamicin was at a comparatively low level and only significantly higher 185 

for poultry as compared to cattle and pigs (3.7-7.0 versus 0.2-2.2%; P<0.001). Of the 186 

cephalosporins, resistance to cefotaxime was essentially very low in cattle and pigs 187 

(0.0-0.5 and 0.2-1.2%), and low in broilers (1.6-7.4%). Resistance to cefepime was 188 

virtually absent. Similarly, resistance to colistin was very low, but in the surveys 2008-189 

2009 and 2013-2014 it amounted to 3.1% (cattle), 4.8% (pigs) and 4.4% (broilers). Out 190 

of 16 colistin-resistant E. coli isolates recovered in the EASSA 2017-2018 survey, 9 191 

(56.3%) harboured mcr-1 genes. Eight of these isolates originated from broilers 192 

(France, Germany); one isolate was from a pig (Spain). Clinical resistance to 193 

meropenem and tigecycline was absent for all three hosts, and NWT was only 194 

encountered for one avian isolate each. For azithromycin and ceftazidime, data are 195 

only available for the time period 2017-2018. Resistance to both molecules was very 196 

low or low in all three species (Table 1).  197 

Marked country differences were noted for most antibiotics (Tables S1-4). With 198 

regard to cattle, in the first survey resistance to ampicillin, chloramphenicol, 199 

tetracycline and TS of French isolates was higher (P<0.01) than those of Germany, 200 

Italy and UK, but this was not apparent in the last survey, where the highest resistance 201 

percentages were recorded for Italy (P<0.01). In all four surveys, the level of 202 

resistance of porcine isolates was the highest for Spanish isolates: For ampicillin, 203 

chloramphenicol, gentamicin, tetracycline and TS, AMR was always higher (P<0.01) 204 
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than that from Denmark, France, Germany, The Netherlands or UK. The same 205 

tendency was observed for the CIAs, although significant differences were usually 206 

absent. Porcine isolates from Denmark showed frequently the lowest prevalence of 207 

resistance to ampicillin, chloramphenicol, tetracycline and TS. A slightly different 208 

picture was seen for the broiler isolates: Whereas the percentages of CIAs resistance 209 

in broiler isolates from UK were particularly low, we found extremely high levels of 210 

resistance/NWT to quinolones in Hungary and Spain. In general for several 211 

antimicrobials including the CIAs, Spanish AMR percentages were among the highest, 212 

the proportion of resistant isolates to TS was significantly lower than in the isolates 213 

from other countries (P<0.01).  214 

Several changes of resistance or NWT in time were identified (Table 1). The 215 

lowest frequencies of resistant isolates were usually found in 2017-2018 for pigs and 216 

broilers, e.g., for tetracycline and TS, the frequency was significantly lower compared 217 

to the preceding periods (P≤0.05). In broilers, the same holds true for ampicillin, 218 

cefotaxime, chloramphenicol, and nalidixic acid (P≤0.05). For broilers, the percentage 219 

NWT for both cephalosporins also decreased markedly in the last survey. This 220 

contrasts with cattle, where the frequency of the resistant isolates was the highest in 221 

2017-2018 for ampicillin, chloramphenicol, tetracycline and TS (P≤0.05).  222 

MDR results are summarized in Table 2. Overall pooled values were 3.5% for 223 

cattle, 23.7% for pigs and 25.9% for broilers, and were significantly lower in cattle for 224 

all four time periods (Table 2). For cattle, we found no consistent MDR trend over time, 225 

whereas we noticed a tendency for a decrease for pigs. For broilers a significant 226 

decrease in MDR (P<0.01) over time was observed. Table 3 presents the overall data 227 

of various MDR phenotypes; MDR data for the individual time periods are in 228 
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Supplementary Table S5. MDR (based on ten classes) amounted to 2.1-5.1%, 21.9-229 

26.2% and 18.7-34.1% for cattle, pigs and broilers, respectively. For cattle 16 MDR 230 

phenotypes were detected (Table 3), with two major MDR patterns: amp/tet/TS (n=36, 231 

1.1%) and amp/chl/tet/TS (n=23, 0.7%). For pigs, 24 MDR phenotypes were observed 232 

with amp/tet/TS (n=442, 12.1%) and amp/chl/tet/TS (n=271, 7.4%) as major patterns. 233 

For broilers (26 phenotypes) the most frequent MDR phenotype was the combination 234 

amp/tet/TS (n=487, 12.9%) followed by amp/cip/tet/TS (n=124, 3.3%) and 235 

amp/chl/tet/TS (n=114, 3.0%). Overall, 167 isolates (1.6%) of all 10,613 isolates were 236 

resistant to five compounds, and 51 isolates (0.5%) to six compounds. Six isolates 237 

were resistant to seven compounds.  238 

Finally, the combined resistance to ciprofloxacin and cefotaxime was analysed 239 

(Table 4). In cattle and pigs, combined NWT or combined clinical resistance was either 240 

not observed or detected at very low levels. In broilers both percentages NWT and 241 

clinical resistance were higher (1.6-7.2% and 0.4-3.4%, respectively). Significant 242 

changes over time were only observed for broilers; the percentage of the combined 243 

resistance in 2017-18 was lower than the levels of the two preceding periods 244 

(P<0.001).  245 

 246 

Discussion  247 

Studying AMR in commensal indicator E. coli from intestinal content of healthy food-248 

producing animals provides information on the reservoirs of resistant bacteria that can 249 

potentially be transferred between animals and between animals and humans. It also 250 

provides indirect information on the reservoirs of resistant determinants in animals. 251 

The ongoing threat of AMR is a looming public health concern.41 AMR monitoring in 252 
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food-producing animals, therefore, has relevance to both public and animal health. 253 

AMR exhibited by indicator E. coli likely depends on several factors such as the 254 

selective pressure from the use of antimicrobials in animals, co-selection of bacteria 255 

with MDR, clonal spread of resistant bacteria and dissemination of particular genetic 256 

elements, such as resistance plasmids and integrons in Gram-negatives. 257 

The study design allowed comparisons to be made between host species, 258 

countries and antimicrobial agents. Resistance to ampicillin, trimethoprim, tetracycline 259 

and TS were the most common resistance traits observed (Figure 1), with large 260 

differences between countries. The frequent occurrence of these resistances likely 261 

reflects an extensive use of antimicrobial agents in veterinary field over many years. 262 

Also, resistance to ciprofloxacin, a CIA of the Highest Priority, was common in broilers. 263 

This contrasted with the very low or low resistance proportions to ciprofloxacin in cattle 264 

and pigs. A similar observation was made for the combined resistance to ciprofloxacin 265 

and cefotaxime: very low in cattle and pigs, whereas higher in broilers. Among the 266 

other CIAs tested, resistance to colistin and azithromycin (both categorized as CIAs of 267 

the Highest Priority8) was low. Resistance to cefotaxime, ceftazidime or cefepime was 268 

absent or detected at very low or low levels in some countries. Resistance to 269 

tigecycline and carbapenems (meropenem) was not detected.  270 

Comparison of the time periods revealed that for broilers a marked increase in 271 

resistance occurred from 2004-06 to 2008-09 for a few antimicrobials, whereas for the 272 

final period 2017-18, AMR for most antimicrobials decreased significantly. These 273 

results are compatible with those of the EFSA/ECDC study.18 In the latter study, the 274 

trends of resistance focused on four antimicrobials; ampicillin and tetracycline because 275 

these antimicrobials have been the most used in Europe, and the High Priority CIAs 276 
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ciprofloxacin and cefotaxime. For broilers, in 29 European countries, 51 decreasing 277 

and 17 increasing temporal trends were recorded. Overall, resistance to all four 278 

antimicrobials has declined significantly over 2009-2019.18 In pigs, generally 279 

decreasing trend of AMR and a statistically significant decrease in tetracycline 280 

resistance was observed over the period 2009-19; a similar decrease of tetracycline 281 

resistance was seen in our programme. In beef cattle significant trends were absent. 282 

The increasing prevalence of resistance to third-generation cephalosporins in 283 

the past few decades has resulted in a global health problem and resulted in 284 

monitoring of the ß-lactamases responsible for this phenotype (i.e., ESBL and AmpC). 285 

This EASSA programme over the 2004-2018 collection periods has recorded this 286 

resistance in 288 out of 10,613 isolates (2.7%). Detailed results on the occurrence and 287 

characterization of ESBL/AmpC-producing E. coli bacteria of the four time periods are 288 

reported elsewhere;31,42-44 hence, here a summary comparison among the four time 289 

periods is provided (Table 5). The majority of the detected genes encoded ESBLs 290 

(63.1%) and AmpC (25.5%). Interestingly, the occurrence of presumptive 291 

ESBL/AmpC-producers was similar in the EFSA/ECDC study, ESBL-producers were 292 

also more common than AmpC-producers, and isolates producing both ESBL and 293 

AmpC were rare.18 In our study, blaCTX-M-1 and blaCMY-2 dominated among ESBL and 294 

AmpC genes, respectively.31,44 Similar results were observed in the preceding time 295 

period 2002-03,30 whereas cephalosporin NWT strains were absent in 1999-2001.27 296 

Colistin (polymyxin E) has been used extensively in food animals all over the 297 

world, including Europe. Use in human medicine has been very restrictive for decades 298 

owing to its systemic toxicity. In recent years, however,  there is an increased need of 299 

last-resort antimicrobials such as colistin, to treat MDR infections caused by Gram-300 
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negative bacteria.45-47 Consequently, colistin is now listed as a CIA of highest priority.8 301 

The discovery of transferable genetic elements (e.g., mcr genes) conferring resistance 302 

to colistin underlines the importance of the resistance monitoring study. In the period 303 

2017-2018, 9 colistin-resistant E. coli isolates (0.3% of all E. coli) harboured mcr-1 304 

genes. In the preceding time periods, these figures were 0% (2004-06), 1.7% (2008-305 

09) and 0.8% (2013-14).12 From 2004 to 2014 mcr-1 positive E. coli were isolated in 306 

broilers (n=45, 2.3%) and pigs (n=23, 1.1%); none of the cattle isolates harboured 307 

mcr-1.12 In the EFSA/ECDC study, colistin resistance was also infrequently detected in 308 

isolates from pigs and broilers.18  309 

There was considerable variation between individual countries and hosts in the 310 

prevalence of resistance. It is tempting to ascribe such variation to differences in 311 

amounts of antimicrobial products used. Several national resistance monitoring 312 

surveys in Europe include antimicrobial usage (AMU) data in animals.14-17 Also, 313 

specific ad hoc studies are available.22,23,48-50 For all EU countries, the European 314 

Surveillance of Veterinary Antimicrobial Consumption (ESVAC) is recording in a 315 

uniform manner national AMU in veterinary medicine.51 The antimicrobial sales for 316 

food animals ranged from 2 to 394 mg/population correction unit between countries; 317 

the median was 52 mg/population correction unit.51 Hence, differences in AMR levels 318 

of E. coli may well be related to AMU.  319 

The reduction of AMR in several countries of our study in broilers, particularly for 320 

antimicrobials most commonly used in veterinary medicine such as tetracyclines and 321 

penicillins, is likely influenced by the overall decline in AMU since 2011, as noted in 322 

the ESVAC report.51  In addition, the decline of the prevalence of ESBL/AmpC in our 323 

study, may be related to the decreased cephalosporin use.51 A comparison of 324 
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consumption per animal species would be very helpful in further elucidating this 325 

association but is unfortunately currently not available. Yet two recent studies give first 326 

insights in AMU in pigs and broilers across nine European countries and also show 327 

marked differences in use within and between countries.49,50 From 2024 onwards, it 328 

will become mandatory for EU countries to provide AMU data by animal species under 329 

the framework of EU Regulation 2019/6.  330 

 Although AMU differences may explain part of the findings from this study, the 331 

association between AMU and AMR is not always so straight forward. A single drug 332 

can select resistance to several chemically unrelated agents. Moreover, genes 333 

conferring resistance to these compounds are often linked to mobile genetic elements 334 

resulting in co-selection.52,53 In addition, selection of resistance by one compound can 335 

lead to resistance against different molecules of the same class, (e.g., enrofloxacin 336 

and ciprofloxacin cross-resistance). In the absence of cephalosporin use in broilers, 337 

introduction through imported breeding stock of E. coli carrying AmpC and vertical 338 

transmission through the production pyramid could explain the occurrence of 339 

cephalosporin-resistant E. coli.14,54,55 Observations made with regard to 340 

chloramphenicol (resistance prevalence moderate in this study in pigs and broilers, as 341 

in previous studies, e.g.27,28), which is already banned for use for farm animals in 342 

Europe for many years, also demonstrate at least some disconnection between AMR 343 

and AMU of the same antimicrobial class, as the chloramphenicol resistance of avian 344 

E. coli isolates can not be explained by the use of the related compound florfenicol 345 

because florfenicol has not been approved for poultry in the EU. Co-selection by 346 

unrelated compounds is the most likely explanation. In contrast, for cattle and pig E. 347 

coli isolates, the use of florfenicol can select directly for resistance to chloramphenicol 348 
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due to floR genes. Similarly, azithromycin, an azalide macrolide, is not used in animals 349 

while resistance is observed in this and other studies.14,22 350 

In the EASSA programme both ECOFFs and CBPs were applied. Application of 351 

only CBPs could mask important shifts in MICs towards a less susceptible population. 352 

On the other hand, the stand-alone application of ECOFFs, and not including CBPs, 353 

can cause confusion, particularly among clinicians who are likely to interpret the term 354 

“resistant” as “clinically resistant”, and not, “less susceptible but nevertheless 355 

susceptible to the prescribed treatment”.56 An additional analysis of MDR based on 356 

ECOFFs shows that the overall MDR percentages are similar because the ECOFFs 357 

and CBPs associated with the major phenotypes are identical (chloramphenicol, 358 

tetracycline, TS) or differ at most one dilution (ampicillin). The only exception applies 359 

to broilers where amp/cip/tet/TS (8.2%) exceeded that of amp/tet/TS (7.4%). This 360 

illustrates the relevance of applying both ECOFFs and CBPs in monitoring 361 

programmes such as the present one.    362 

Taken together, the results described here, analyse data from 10,613 E. coli 363 

isolates tested for resistance against up to 15 antimicrobial agents, collected over two 364 

decades and analysed and interpreted according to a uniform methodology provides a 365 

more extensive database than the previous EASSA studies (e.g.29) in which nine 366 

agents were tested against considerably less isolates. Another strength is that all MIC 367 

testing is performed in a central laboratory,57,58 which enables comparisons of different 368 

EU countries and different EASSA surveys. The data provide many very interesting 369 

insights and invites for further research on the complex drivers for selection and 370 

weaning of antimicrobial resistance.   371 

 372 
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Table 1.  Antimicrobial susceptibility of E. coli isolates (n=10,613) of cattle (n=3,164), pigs (n=3,660) and broilers (n=3,789) in four time 
periods (2004-2006, 2008-2009, 2013-2014, 2017-2018).   

 
  Cattle  Pigs  Broilers  

Antimicrobial Interpretation* 2004-06 
n=404 

2008-09 
n=759 

2013-14 
n=841 

2017-18 
n=1160 

2004-06 
n=529 

2008-09 
n=950 

2013-14 
n=1136 

2017-18 
n=1045 

2004-06 
n=563 

2008-09 
n=1003 

2013-14 
n=1016 

2017-18 
n=1207 

Ampicillin MIC50 2 4 4 4 2 4 4 8 >128 256 256 256 
 MIC90 4 4 8 8 >128 >256 >256 >256 >128 >256 >256 >256 
 R (≥32) 5.4a 3.3a 5.1a 7.8a 32.7b 36.4b 37.5b 35.3b 56.0c 65.3c 57.6c 51.7c 
 NWT (≥16) 5.4 3.8 5.2 8.6 33.3 36.9 37.9 36.6  56.4 67.5 57.8 52.5 
 

    
 

   
 

  
 

 

Azithromycin MIC50 - - - 4 - - - 4 - - - 4 
 MIC90 - - - 8 - - - 8 - - - 8 
 R (≥32) - - - 0.2a - - - 1.1b - - - 2.0b 
 

    
 

   
 

  
 

 

Cefepime MIC50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
 MIC90 0.03 0.03 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.12 0.12 0.06 
 R (≥16) 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.1 
 NWT (≥0.25) 0.0 0.3 0.9 0.7 0.6 0.4 1.2 1.0 6.8 6.9 6.9 2.3 
 

    
 

   
 

  
 

 

Cefotaxime MIC50 0.03 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
 MIC90 0.06 0.06 0.12 0.12 0.06 0.06 0.12 0.12 0.12 0.25 0.25 0.12 
 R (≥4) 0.0a 0.3a 0.5a 0.3a 0.2 0.4 1.2 0.8 5.7b 7.4b 6.1b 1.6b 
 NWT (≥0.5) 0.7 0.4 0.6 0.5 0.6 0.4 1.5 1.1 6.1 9.8 8.2 2.3 
 

    
 

   
 

  
 

 

Ceftazidime MIC50 - - - 0.25 - - - 0.12 - - - 0.12 
 MIC90 - - - 0.25 - - - 0.25 - - - 0.25 
 R (≥16 - - - 0.2a - - - 0.1a - - - 1.1b 
 NWT (≥1) - - - 0.4 - - - 1.0 - - - 2.2 
 

    
 

   
 

  
 

 

Ciprofloxacin MIC50 0.008 0.016 0.016 0.016 0.008 0.008 0.016 0.016 0.016 0.12 0.12 0.12 
 MIC90 0.016 0.03 0.016 0.016 0.016 0.016 0.016 0.12 0.25 8 8 8 
 R (≥1) 0.2a 0.5a 1.3a 0.3a 0.6a 0.8a 2.5a 1.6b 7.3b 22.7b 23.3b 21.8c 
 NWT (≥0.12) 2.2 1.2 2.3 2.8 4.6 4.3 8.2 8.2 37.6 50.6 57.5 52.5 
 

    
 

   
 

  
 

 

Chloramphenicol MIC50 4 8 8 8 4 8 8 8 4 8 8 8 
 MIC90 8 8 8 8 64 64 64 128 128 128 32 16 
 R (≥32) 3.5a 1.3a 2.4a 4.7a 14.2b 16.4b 15.8b 21.3b 14.6b 18.0b 10.6c 9.3c 
 

    
 

   
 

  
 

 

Colistin MIC50 0.12 0.5 1 0.5 0.12 0.25 1 0.25 0.25 0.5 1 0.25 
 MIC90 0.5 0.5 2 0.5 0.25 0.5 2 0.5 0.25 0.5 2 0.5 
 R (≥4) 0.2 0.1a 3.1a 0.1a 0.6 0.6a 4.8a 0.2a 0.5 4.4b 0.6b 1.1b 
 

    
 

   
 

  
 

 

Gentamicin MIC50 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 1 
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 MIC90 1 1 1 1 1 1 1 2 1 1 1 2 
 R (≥16) 0.2a 0.4a 0.4a 1.1a 1.7b 0.9a 1.6b 2.2a 3.7c 6.4b 5.1c 7.0b 
 NWT (≥4) 0.9 0.5 0.4 1.3 2.3 1.3 2.2 3.1 3.9 8.9 6.8 8.0 
 

    
 

   
 

  
 

 

Meropenem MIC50 - - ≤0.016 ≤0.016 - - ≤0.016 ≤0.016 - - ≤0.016 ≤0.016 
 MIC90 - - ≤0.016 ≤0.016 - - ≤0.016 ≤0.016 - - ≤0.016 ≤0.016 
 R (≥4) - - 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 
 NWT (≥0.25) - - 0.0 0.0 - - 0.0 0.0 

 
- 0.0 0.1 

 
    

 
   

 
  

 
 

Nalidixic acid MIC50 - 2 4 4 - 2 4 4 - 64 128 32 
 MIC90 - 4 4 4 - 4 8 16 - >128 >128 >128 
 R (≥32) - 1.1a 2.1a 2.2a - 4.2b 6.0b 7.3b - 54.0c 58.1c 51.8c 
 

    
 

   
 

  
 

 

Tetracycline MIC50 1 2 2 2 128 128 32 32 128 128 32 4 
 MIC90 64 4 4 16 >128 256 256 128 >128 256 256 128 
 R (≥16) 11.1a 7.0a 7.7a 10.4a 64.3b 67.5b 57.5b 53.3b 67.5b 61.1c 54.7b 41.3c 
 

    
 

   
 

  
 

 

Tigecycline MIC50 - 0.25 0.25 0.25 - 0.25 0.25 0.25 - 0.25 0.25 0.25 
 MIC90 - 0.5 0.25 0.5 - 0.5 0.5 0.5 - 0.5 0.5 0.5 
 R (≥4) - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 
 NWT (≥2) - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.1 0.0  

 
   

 
   

 
  

 
 

Trimethoprim MIC50 - - - 0.5 - - - 0.5 - - - 0.5  
MIC90 - - - 0.5 - - - >512 - - - 512  

R (≥16) - - - 6.4a - - - 35.7b - - - 32.0b  
NWT (≥4) - - - 6.6 - - - 36.2 - - - 32.1  

 
   

 
   

 
  

 
 

Trimeth-sulfa$ MIC50 0.06 0.12 0.06 0.06 0.25 0.25 0.12 0.06 2 1 0.12 0.06 
 MIC90 0.06 0.25 0.25 0.12 >128 256 >256 >256 >128 256 >256 >256 
 R (≥4/76) 4.2a 2.8a 3.9a 5.6a 38.0b 39.5b 35.8b 29.5b 49.7c 45.6c 34.6b 27.5b 
              

aThe clinical breakpoints and ECOFFs are indicated in parentheses. MIC50 and MIC90 are expressed in mg/L, R (clinical resistance) and NWT (non-wild type) are expressed in %.  
$Trimeth/sulfa: Trimethoprim/sulfamethoxazole MIC50/90 figures refer to trimethoprim concentrations only. 
Different letters indicate statistically significant differences of clinical resistance among the three host species of a given time period. 
Percentages of resistance in bold indicate significant differences of the time periods 2004-06, 2008-09 and 2013-14 compared to the time period 2017-18 of a given host species. 
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Table 2. Prevalence of multi-drug resistance (%) of E. coli isolates of cattle, pigs and broilers during the four survey time periods.   
 

 Cattle (3164)* Pigs (3660)* Broilers (3789)* 

2004-2006 3.0a 22.7b 34.1c 

    

2008-2009 2.1a 26.2b 33.3c 

    

2013-2014 2.6a 23.8b 24.2b 

    

2017-2018 5.1a 21.9b 18.7c 
*The numbers in parentheses refer to the total number of isolates included in the entire study; for the numbers per study period see Table 1. 

Different letters in the same line indicate statistically significant differences of MDR among the three host species. 
Percentages of resistance in bold indicate significant differences of the time periods 2004-06, 2008-09 and 2013-14 compared to the time period 2017-18 of a given host species 
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Table 3. Proportions of multi-drug resistance of E. coli isolates of cattle, pigs and 
broilers during 2004-2018. 
 

Resistance 

 phenotype 

Number 

of  

drugs 

 

2004-2018 

Cattle 

(3164) 

 

Pigs 

(3660) 

Broilers 

(3789) 

  n % n % n % 

Amp/tet/TS 3 36 1.1 442 12.1 487 12.9 

Amp/chl/tet 3 15 0.5 53 1.5 32 0.8 

Amp/chl/TS 3 8 0.3 22 0.6 16 0.4 

Amp/chl/tet/TS 4 23 0.7 271 7.4 114 3.0 

Amp/cip/tet/TS 4 3 0.1 6 0.2 124 3.3 

Amp/chl/ctx/Tet 4 0 0.0 1 <0.1 6 0.2 

Amp/chl/ctx/TS 4 1 <0.1 0 0.0 0 0.0 

Amp/chl/gen/Tet 4 0 0.0 3 0.1 4 0.1 

Amp/chl/gen/TS 4 0 0.0 1 <0.1 2 <0.1 

Chl/gen/tet/TS 4 4 0.1 0 0.0 5 0.1 

Amp/ct/tet/TS  4 0 0.0 8 0.2 5 0.1 

Amp/ctx/tet/TS 4 2 0.1 5 0.1 28 0.7 

Amp/chl/cip/tet 4 0 0.0 0 0.0 19 0.5 

Amp/chl/cip/tet/TS 5 3 0.1 13 0.4 44 1.2 

Amp/chl/ctx/tet/TS 5 1 <0.1 2 0.1 2 <0.1 

Amp/chl/gen/tet/TS 5 8 0.2 11 0.3 5 0.1 

Amp/cip/gen/tet/TS 5 2 0.1 1 <0.1 20 0.5 

Amp/chl/cip/gen/TS  5 0 0.0 1 <0.1 5 0.1 

Amp/cip/ct/tet/TS  5 0 0.0 2 0.1 1 <0.1 

Amp/ctx/ct/tet/TS  5 0 0.0 2 0.1 6 0.2 

Amp/ctx/cip/tet/TS  5 0 0.0 2 0.1 4 0.1 

Amp/chl/ct/tet/TS  5 1 <0.1 14 0.4 17 0.4 

Amp/chl/cip/ctx/tet/TS  6 3 0.1 2 0.1 5 0.1 

Amp/chl/cip/ct/tet/TS  6 1 <0.1 2 0.1 8 0.2 

Amp/chl/cip/gen/tet/TS  6 1 <0.1 4 0.1 18 0.5 

Amp/chl/ctx/cip/gen/tet 6 0 0.0 1 <0.1 0 0.0 

Amp/ctx/cip/gen/tet/TS  6 0 0.0 0 0.0 6 0.2 

Amp/chl/cip/ct/gen/tet/TS 7 0 0.0 2 0.1 4 0.1 

Total   112 3.5 867 23.7 982 25.9 
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MDR was based on the following ten classes: penicillins, extended-spectrum cephalosporins (cefotaxime), fluoroquinolones, phenicols, polymyxins, 
aminoglycosides, carbapenems, folate pathway inhibitors, tetracyclines and glycylcyclines. Abbreviations: amp, ampicillin; ctx, cefotaxime; chl, 
chloramphenicol; cip, ciprofloxacin; ct, colistin; gen, gentamicin; tet, tetracycline; TS, trimethoprim/sulfamethoxazole. 

 
 

 
 
 
Table 4. Non-wild type and clinical resistance to both ciprofloxacin and cefotaxime based on 
ECOFFs and clinical breakpoints during four time periods for cattle, pig and broiler isolates.  

 

 2004-2006 2008-2009 2013-2014 2017-2018 

 NWT Resistance NWT Resistance NWT Resistance NWT Resistance 

 n % n % n % n % n % n % n % n % 

Cattle 

 

0 0 0 0 0 0 0 0a 4 0.5 3 0.4a 3 0.3 1 0.1a 

Pigs 

 

0 0 0 0 1 0.1 0 0a 7 0.6 5 0.4a 2 0.2 1 0.1a 

Broilers 21 3.7 2 0.4 72 7.2 34 3.4b 62 6.1 25 2.4b 19 1.6 11 0.9b 
Different letters in the same column indicate statistically significant differences of combined resistance among the three host species. 
Percentages of resistance in bold indicate significant differences of the time periods 2008-09 and 2013-14 compared to the time period 2017-
18 of a given host species 

 

 
 
 
Table 5. Overview on the occurrence of ESBL- and/or AmpC-producing E. coli in food animals 
during four time periods of the EASSA project. 
 
 

Numbers 2004-2006 2008-2009 2013-2014 2017-2018 Overall 

Total isolates 1,496 2,712 2,993 3,412 10,613 

CP-resistant isolates* 45 (3.0%) 109 (4.0%) 100 (3.3%) 34 (1.0%) 288 (2.7%) 

ESBLs 

 
35 59 68 27 189 

AmpC 

 

2 47 20 7 76 

ESBL and AmpC 

 

1 0 2 0 3 

Unknown mechanism 

 

7 3 10 0 20 

*CP: cefotaxime-and/or ceftazidime-resistant. Percentage CP-resistant isolates is indicated in parentheses. 
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