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Abstract

Waste management of brewery by-products is economically and environmentally problematic. In the frame  
of bio-recycling, this study aims to investigate the bioconversion of brewery by-products by filamentous fungi. 
Pleurotus ostreatus and Lentinula edodes were grown on different substrates based on brewer’s spent grains (fresh 
and dry). Afterwards, fatty acids and sterols were determined. Following the selection of the suitable substrate 
composition for fungal growth, results showed that fatty acids composition of fungal biomasses varied signifi-
cantly as a function of substrate and fungal strain. Interestingly, fungal fat might be used for human nutrition due 
to low SFA/UFA ratios (~0.2–0.4) within the same range of vegetal oils. Sterols profile of fungi biomass revealed 
the predominance of ergosterol. Also, it was found that the fungi growing on by-products slightly reduced the 
cholesterol contents. As such, this approach focusing on the bioconversion of by-products using fungi can provide 
biomasses with a fat composition suitable for feed and human consumption.
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waste and by-products are considered the key elements  
in the Work Programme 2021–2022 (EU 2021). 

The brewing industry is an important global business 
with huge annual revenues (US$ 651,398 million in 2021) 
with a compound annual growth rate of 7.4% from 2021 
to 2025 (Statistica 2021). On the other hand, malting and 
brewing generate high amounts of by-products including 
brewer’s spent grain, hot trub, wastewater, spent hops, 
and residual brewer’s yeast (Jaeger et al., 2020; Karlović 
et al., 2020). Brewer’s spent grain, the main by-product 
(~85%), is known for its rich composition of proteins 
(20–30%), fiber (30–70%), lipids (5–10%), vitamins, and  
minerals (Fărcaş et al., 2017). Given this nutritious compo-
sition and affordability, the biotechnological valorization 
of such by-products is deemed necessary for economic  
and environmental motives (Berglund et al., 2016; 

Introduction 

By-products from the agro-industrial sector present 
crescent environmental and economic problems because 
handling large amounts of organic material requires 
high expenses and can negatively affect the environment 
(Barcelos et al., 2020; Correddu et al., 2020; Radenkovs 
et al., 2018). In most cases, this material is reutilized 
as fertilizers in the field, or burnt or drained as a waste 
(Bhuvaneshwari et al., 2019; Duque-Acevedo et al., 2020; 
Puglia et al., 2021). The proper valorization of by-products  
can efficiently reduce their environmental impact and 
obtain new strategic solutions to increase the productiv-
ity and sustainability of agro-industrial systems (Boukid 
et al., 2021a; Ferreira et al., 2022; Pauletto et al., 2020; 
Hamam et al., 2021; Pauletto et al. 2020; Boukid et al., 
2021). In the European Union, the use and valorization of 
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Aspergillus ibericus produced lignocellulolytic enzymes 
using brewer’s grain spent as substrate (da Silva Menezes 
et al., 2017; Sousa et al., 2018). The enzymes such as 
xylanase and cellulase contribute to the increase in the 
release of primary and secondary metabolites (Verni  
et al., 2020). The nutritional value of the by-products 
was improved in terms of increasing protein content and 
producing value-added products such as lignocellulo-
lytic enzymes and antioxidant peptides (da Silva Menezes  
et al., 2017; Sousa et al., 2018). Fungi Neurospora interme-
dia and Rhizopus oryzae were used to produce new protein- 
enriched products out of this by-product (Gmoser et al., 
2020). 

Past studies on the bioconversion of brewery by-products 
using fungi focused on the impact of substrate on fungal 
growth, yield, and nutritional composition of the biomass 
with emphasis on proteins, amino acids, fibers, and min-
erals (Hoa et al., 2015; Koutrotsios et al., 2014; Wang et al.,  
2001), while lipids were rarely targeted. Noteworthy,  
fungal lipids are gaining attraction in production of 
healthier and more sustainable alternatives for edible 
plant and/or animal lipids (Athenaki et al., 2018; Zhang  
et al., 2022). The interest in fungi as a source of proteins is 
not new and keeps increasing (Ciani et al., 2021; Ibarruri  
et al., 2021). This can be attributed to their white color 
and bland taste, and most importantly their filamen-
tous texture that suits meat analog applications such as 
Quorn™ made using biomass fermentation (Fusarium 
venenatum) (Boukid et al., 2021b). Further understand-
ing of the fat component of edible fungi could be of 
interest as a potential fat replacer to make healthy and 
sustainable plant-based products. 

Therefore, this work aims to expand the knowledge on 
fungal efficiency and the bioconversion of by-products 
to fatty acids and sterols using edible fungi. Remarkably, 
Pleurotus ostreatus and Lentinula edodes, two widely 
used edible fungi, were cultivated using substrates 
made using brewery by-products. The first step con-
sisted of the selection of suitable substrates for fungal 
growth. Afterward, the focus was attributed to assessing 
fatty acids and sterols profiles as a function of selected 
substrates. 

Material and Methods 

Material 

For the purposes of this study, the fungal strains P. ost-
reatus (Jacq.) P. Kumm. (common name: Winter Oyster 
Mushroom) M2191 and L. edodes (Berk.) Pegler (com-
mon name: Shiitake) M3790 were purchased from 
Mycelia BVBA® (Veldeken, Belgium). Brewer’s spent 
grains were collected from a local brewery (Mahou San 

Karlović et al., 2020; Rachwał et al., 2020; Severini et al., 
2015). From a circular economy viewpoint, an integral 
bioremediation and valorization of brewery by-products 
relies on implementing bioreactors and identifying suita-
ble microorganisms (e.g., yeast and fungi) to degrade this 
material and produce valuable compounds  (Bianco et al., 
2020; Gmoser et al., 2020; Mohajeri et al., 2021; Xiros 
and Studer 2017). 

Filamentous fungi were demonstrated to be efficient 
decomposers of different substances and complexes bio-
mass (Dai et al., 2018). Fungi could produce numerous  
extracellular enzymes, mainly hydrolases and oxidore-
ductases. Phytase, laccase, pectinase, cellulases, xylanases,   
lipases, and tannase are among the most important 
enzymes produced by fungi (Campioni et al., 2019; 
Linhartová et al., 2020; Londoño-Hernandez et al., 2020). 
One of the main activities of these enzymes is the biocon-
version of a wide variety of agricultural and/or industrial 
biomass (El-Gendi et al., 2022; Fernandes et al., 2020; 
Xu et al., 2018). Thus, fungi can be considered as cell  
factories that produce high-value compounds including 
cellulose, antibiotics, organic acids, pectin, inulin, pro-
teins, and lipids (Liu et al., 2020). Furthermore, fungal 
enzymes are of high value and dominate nearly half of 
the enzyme market due to their availability, compatibility, 
cost-efficiency, and versatility of applications (e.g., med-
icine, biotechnology, food, leather, and textile (El-Gendi  
et al., 2022; Meyer et al., 2020; Pellegrino et al., 2022; 
Wang et al., 2018). Therefore, the use of fungi is a prom-
ising green approach toward the production of sustain-
able compounds, reduction in the cost of production, 
and mitigation of the impact of wastes on the environ-
ment which contributes to bio-economies and human 
health (Boukid and Gagaoua 2022; Meyer et al., 2020). 

Brewer’s spent grains are lignocellulosic biomass rich in 
arabinoxylan (22−28%), cellulose (17−25%), and lignin 
(12−28%) (Fărcaş et al., 2017; Reis et al., 2015), and thus 
represent a good source of carbon for fungal growth. 
Several studies focused on the use of this by-product as 
a low-cost substrate for edible mushrooms (saprophytic 
fungi) able to degrade lignocellulosic materials (Fărcaş 
et al., 2017; Rachwał et al., 2020). Thus, the bioconver-
sion of brewer’s spent grain using fungi can be consid-
ered a promising sustainable strategy (Dias et al., 2018; 
Marcus and Fox 2021). The most cultivated edible fungi 
are Lentinula (shiitake and relatives), Pleurotus (oyster 
mushroom), Auricularia (wood ear mushroom), and 
Agaricus (button mushroom and relatives) (Kumla et al., 
2020). Fungi such as Rhizopus spp., Trichoderma spp., 
and Mucor spp. have been used to hydrolyze brewer’s 
grain spent, which resulted in producing nitrogen and 
carbon and releasing proteins and sugars for their growth 
that required no extra nutrients (Bekatorou et al., 2015; 
Cooray and Chen 2018). Aspergillus brasiliensis and 
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samples (500 mg) were extracted using a mixture of 
chloroform and methanol (2:1, v/v), derivatized with a 
mixture of toluene and 3 N HCl in methanol (1:4, v/v) 
at 80°C for 1 h and added with 10% NaCl  in water and 
hexane (10:3, v/v). Fatty acids methyl esters were recov-
ered in the organic phase and then separated on a gas 
chromatograph, Agilent 6890 Series II (Hewlett Packard 
SA, Barcelona, Spain), equipped with a capillary column 
DB23 (30 m × 0.25 mm i.d., 0.25 μm; Agilent, Santa Clara, 
USA), a split or splitless injector, and a flame ionization 
detector. Identification of single methyl esters was per-
formed by comparing retention time of the peaks with 
those of pure standards; while quantification was carried 
out using tripentadecanoin (Merck KGaA, Darmstadt, 
Germany) as an internal standard.

Sterol profile

The lyophilized fungi (500 mg) were hydrolyzed in 
Soxcap (FOSS IBERIA, S.A., Barcelona, Spain) with 4 N 
HCl for 5 h. Subsequently, an extraction was carried out 
with 350 mL of hexane: diethyl ether (2:1, v/v). The inter-
nal standard (5α-cholestan-3β-ol) was added to the evap-
orated extract, and saponification was carried out using 8 
mL of 9 N KOH for 3 h at 80°C. For the extraction of the 
unsaponified fraction, three aliquots of 12 mL of hexane 
and diethyl ether (2:1) and 4 mL of ethanol were added. 
The apolar fractions of the three extractions were dried 
and then derivatized with 50 μL of silanizing solution 
(Silylating mixture I according to Sweeley, Sigma Aldrich, 
Missouri, US) for 1 h at 80°C. The derivatized sample was 
dried using nitrogen flow, resuspended with 1 mL isooc-
tane and 2-propanol and injected into the chromato-
graphic equipment. 

For chromatographic analysis, a CP-3800 gas chromato-
graph (Varían) equipped with a DB-5MS column (length: 
30 m, diameter: 0.250 mm diameter, film thickness: 0.25 
μm; Agilent Technologies, Santa Clara, US) was used. For 
chromatographic separation, an initial oven tempera-
ture of 80°C was used, with a gradient of 10°C/min up to 
160°C, a gradient of 5°C/min up to 250°C, and a gradient 
of 1°C/min up to 285°C.

Statistical analysis 

Fatty acids and sterols composition was determined in 
triplicate, and data were expressed as means ± standard 
deviations (SD). The Kruskal–Wallis test was performed 
to verify the substrate on fatty acids, sterols, and lipid 
indices as well as sterols. These tests were performed at 
a significance level of α = 0.05. Finally, to verify the influ-
ence of fungi on fatty acids profile, principal components 
analysis was performed. All the statistical analyses were 

Miguel, Spain). Fresh brewer’s spent grain contained 
75.3% moisture, 2.4% total fat, and 7.6% protein, while 
dried brewer’s spent grain contained 6.7% moisture con-
tent, 8.6% total fat, and 32.4% protein.

Substrate preparation and mushroom cultivation process

For cultivation, heat-resistant polypropylene bags (Sac 
O2®) were used. The formulation of substrates is reported 
in Table 1. All culture bags were filled with a final quantity 
of 4 L of substrate and autoclaved at 100°C for 2 h. The 
mushroom cultivation was performed with an inoculum 
concentration of 10% (dwt/dwt) (Hultberg et al., 2018). 
In all cases, the inoculation ratio used was 1:30 (inocu-
lum:substrate, v:v). The applied dose was higher than that 
usually used in the industrial cultivation of mushrooms, 
which allowed to shorten the incubation times (Aranaz 
et al., 2021; Hultberg et al., 2018). The viability of all the 
inoculums was verified in each experimental batch by 
seeding an aliquot on 3% malt extract agar plates.

Once inoculated, the bags were incubated at a tempera-
ture of 22–25°C for 5–7 weeks. After the incubation 
period, the substrate and the apparent absence of con-
taminants were verified, and the bags were transferred 
to fruiting chambers (temperature: 15 ± 3°C; relative 
humidity: 80–90%) to produce mushrooms. In all the 
experiments, a commercial substrate of edible mush-
rooms was used as a control. For each experiment, four 
replications were carried out. 

Fatty acids profile

Fatty acids profile was assessed using a method reported 
in a previous work by Riudavets et al., (2020). In brief, 

Table 1. Formulation of substrates based on selected 
by-products.

Substrate Composition 

Control Chestnut wood chips (1500 mL) + chestnut sawdust 
(1000 mL) + cereal seeds (equal parts of  corn, 
barley, and wheat) (92.6 g) adjusted to 60% humidity 
and a pH of  5.5–6

A* Dry brewer’s spent grain (3 L) + H2O (1.8 L) + control 
(1:3, v:v)

B* Dry brewer’s spent grain (1 L) + yeast lysate (500 mL)  
+ H2O (500 mL) + control (1:3, v:v)

C* Fresh brewer’s spent grain + control (1:3, v:v)

D* Fresh brewer’s spent grain + control (1:1, v:v)

*The pH of the substrates made with brewer’s spent grain was adjusted 
by adding calcium carbonate (40 g/kg substrate) to reach 5.4.
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were identified in P. ostreatus biomass (Table 3). The 
main fatty acids found were C18:2 (n-6c) followed by 
C16:0 and C18:2 (n-6c), which was consistent with the 
previous works (Cardoso et al., 2020; Gnanwa et al.,  
2021; Pedneault et al., 2007). Results showed varia-
tions in the percentages of the single components and 
their concentrations, without significantly modifying 
the general profiles. More specially, substrates did not 
impact the percentage of fatty acids (C14:0, C15:0, C16:0, 
C18:1[n-9c] and C18:2[n-6c]) except C18:0. This indi-
cates that by-products did not change the fatty acids as 
compared to the control. The concentration of C14:0 
was significantly higher in the control than in biomasses 
grown on brewery by-products, while C16:0 was higher 
in C than in the control and D. As for C18:2(n-6c), C had 
significantly high values than that of the control and D. 
Total fatty acids varied significantly with higher values 
in C than those of the control and D, which showed that 
lower concentration of fresh spent grains favored forma-
tion of fatty acids. Similar trend was observed for mon-
ounsaturated fatty acids (MUFA), polyunsaturated fatty 
acids (PUFA), and ω6. Total saturated fatty acid (SFA) 
was significantly higher in C. No significant differences 
were found in UFA and SFA/UFA as a function of sub-
strates. The study results revealed PUFA as the dominant 
fatty acids, and this finding aligned with the previous 
studies focused on the same fungus but using different 
substrates (Cardoso et al., 2020; Gnanwa et al., 2021). 
Overall, growing P. ostreatus on brewery by-products 
did not affect the composition of fatty acids, suggesting 
their potential use instead of others expensive substrates. 
Noteworthy, all SFA/UFA were lower than 0.5, indicating 
that the fat of these biomasses could be a good candidate 
for use in human and/or animal foods (Sinanoglou et al.,  
2015; Wołoszyn et al., 2020). Indeed, the fatty acids pro-
file was found comparable to that of soybean (C16:0: 
5.5%; C18:2 [n-6c]: 33.2%) and peanut oils (C16:0: 9.55%; 
C18:2 [n-6c]: 65.8%) (Adjepong et al., 2017).

Table 4 shows the fatty acids profile and lipid indices of  
L. edodes as a function of different substrates. Regardless 
of substrates, of the eight fatty acids (C14:0, C15:0, C16:0, 
C16:1 [n-7c], C18:0, C18:1 [n-9c], C18:2 [n-6c], and C18:3 
[n-6c]), C18:2 (n-6c) was the most abundant, followed 
by C16:0. This aligns with the previous study findings of  
L. edodes cultivated using oak tree sawdust and rice (or 
wheat) bran (Chung et al., 2020). No significant differ-
ences were found among the percentages of fatty acids 
as a function of substrate. Nevertheless, the biomass of 
concentrations C16:0, C18:0, and C18:1(n-9c) was found 
to be significantly higher when grown on the control than 
on by-products. Total fatty acids, PUFA, ω6, and UFA 
were found to be unaffected by the substrate. As for SFA 
and MUFA, the control had higher values than the bio-
mass grown on brewery by-products. Noteworthy,  low 

performed using IBM SPSS 24 statistical software (SPSS 
Inc., Chicago, IL, USA).

Results and Discussion

Substrate selection 

Fungi showed different behaviors toward the sub-
strates as illustrated in Table 2. P. ostreatus was able to 
grow on all substrates and yielded higher biomass than 
the control. This fungus is known to produce enzymes 
including lipase, phytase, xylanase, β-galactosidase, and 
cellulase that can break down organic biomass and use 
for its growth (Naim et al., 2020). The quantity of bio-
mass cultivated on dry brewer’s spent grains was higher 
than that that on fresh brewer’s spent grains. This can be 
explained by the higher amount of nutrients in dry sub-
strate compared to that in the fresh (less dry amount) 
one. Particularly, Substrate D ensured the highest bio-
mass production. On the other hand, L. edodes was able 
to grow on all substrates except B. Substrate C made 
with a ratio of 1:3 (v/v) yielded the highest biomass, 
while the remaining substrates (A and D) had low yields. 
Compared to P. ostreatus, L. edodes showed lower growth 
rate, which can be attributed to the higher enzymatic 
activity in P. ostreatus favoring substrate degradation and 
thus fungal growth (Challa et al., 2019).

In the following sections, brewery by-products sub-
strates yielding the highest biomass were retrieved and 
compared to that of the control. Therefore, for P. ostrea-
tus, C and D are considered, and C was considered for  
L. edodes.

Impact of selected substrates on fatty acids profile

Irrespective to the substrates, six fatty acids (C14:0, 
C15:0, C16:0, C18:0, C18:1 (n-6c), and C18:2 (n-6c)) 

Table 2. Biomass resulting from fungi growth on different 
by-products substrates. 

Substrates Pleurotus ostreatus Lentinula edodes

Growth Biomass 
(g)

Growth Biomass 
(g)

Control + 173 + 217

A + 243 ± 99

B + 208 - 0

C + 300 + 293

D + 324 ± 84

+ Growth and production comparable to control; ± Growth and 
production much lower than control; - No growth or production.
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and types (lipase) responsible for fatty acid release and 
degradation (Chandra et al., 2020; López-Fernández et al., 
2020). L. edodes control and that grown on by-products 
were located in opposite sides of PC2, where the control 
had the highest values of C18:3(n-6c), C16:1(n-7c), ω6, 
SFA, PUFA, C18:0, C14:0, C16:0, C18:2(n-6c), UFA, and 
total fatty acids, contrary to fungus grown on C. As for 
P. ostreatus, three biomasses were characterized by high 
amounts of C15:0, MUFA, SFA/UFA, and C18:1(n-9c). 
These results confirmed the variability between substrates 
and fungus, yet no clear clustering was found. 

Impact of selected substrates on sterols profile

Sterol profiles of fungal biomass are summarized in 
Tables 5 and 6. Regardless of the used fungus, no signif-
icant differences were found among sterols as a function 
of substrate except for estigmastanol in the case of P. 
ostreatus. In this case, the control had higher value than 
that of biomass grown on by-products. In L. edodes, only 
cholesterol and campesterol contents were significantly 
different from the control. Cholesterol was found higher 

SFA/UFA values (around 0.2) were obtained, which were 
within the same range of that of canola oil (Tartrakoon 
et al., 2016). Further investigation is needed to study the 
application of L. edodes grown on brewery by-products 
as potential animal-free fat substitute. 

Principal component analysis based on fatty acid concen-
trations and lipid indices enabled a better understanding 
of the impacts of substrate and fungi simultaneously. The 
overall variability explained by the first two components 
was 89%, where the first component (PC1) accounted for 
55% and the second (PC2) for 34%. As illustrated in Figure 
1A, PC1 was explained as a function of C18:3(n-6c), SFA/
UFA, C15:0, C16:1(n-7c), C18:1(n-9c), MUFA, ω6, PUFA, 
C18:2(n-6c) and UFA; whereas PC2 was a function of 
SFA, C16:0, C18:0, total fatty acids, and C14:0. 

The projection the substrate and fungal strains on the fac-
torial spaces created by the first two components showed 
that each fungus took a side of PC1 (L. edodes was on the 
positive side and P. ostreatus on the negative side) (Figure 
1B). Variability between fatty acid compositions of fungal 
biomass can be attributed to different enzyme activities 

Table 3. Percentages and concentration of fatty acids and lipid indices in Pleurotus ostreatus biomasses grown on different substrates. 

Fatty acids Control C D Significance

C14:0 (%) 0.281 ± 0.001 0.332 ± 0.071 0.401 ± 0.070 NS

C15:0 (%) 4.12 ± 0.69 3.75 ± 0.21 4.08 ± 0.11 NS

C16:0 (%) 18.09 ± 1.75 20.9 ± 0.65 21.65 ± 1.83 NS

C18:0 (%) 1.75 ± 0.45b 0.96 ± 0.13a 1.1 ± 0.08a *

C18:1(n-9c) (%) 9.88 ± 0.89 6.17 ± 0.35 6.32 ± 0.35 NS

C18:2(n-6c) (%) 65.87 ± 2.25 67.88 ± 1.19 66.45 ± 2.37 NS

C14:0 (mg/100 mg) 0.002 ± 0.001a 0.004 ± 0.001b 0.004 ± 0.001b *

C15:0 (mg/100 mg) 0.036 ± 0.003 0.042 ± 0.004 0.036 ± 0.003 NS

C16:0 (mg/100 mg) 0.157 ± 0.008a 0.234 ± 0.023b 0.194 ± 0.030a *

C18:0 (mg/100 mg) 0.015 ± 0.004 0.011 ± 0.002 0.010 ± 0.001 NS

C18:1(n-9c) (mg/100 mg) 0.086 ± 0.015 0.069 ± 0.010 0.057 ± 0.007 NS

C18:2(n-6c) (mg/100 mg) 0.579 ± 0.039a 0.757 ± 0.062b 0.594 ± 0.017a *

Lipid indices 

Total 0.875 ± 0.106a 1.116 ± 0.097b 0.895 ± 0.059a *

SFA 0.210 ± 0.005a 0.290 ± 0.028a,b 0.245 ± 0.035b *

MUFA 0.086 ± 0.015 0.069 ± 0.011 0.057 ± 0.007 NS

PUFA 0.579 ± 0.039a 0.757 ± 0.062b 0.594 ± 0.017a *

ω6 0.580 ± 0.150a 0.760 ± 0.06b 0.5911 ± 0.017a *

UFA 0.665 ± 0.089 0.827 ± 0.072 0.651 ± 0.024 NS

SFA/UFA 0.321±0.041 0.351 ± 0.017 0.375 ± 0.039 NS

MUFA = sum of  all monounsaturated fatty acids; PUFA = sum of  all polyunsaturated fatty acids; SFA = sum of  all saturated fatty acids; UFA = 
MUFA + PUFA; SFA/UFA = ratio of  total saturated fatty acids/total monounsaturated fatty acids + total polyunsaturated fatty acids. Values are 
shown as means ± standard deviation. 
Means within a row with different letter differ significantly, *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; NS = not significant.
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Table 4. Percentages and concentration of fatty acids and lipid indices in the biomasses of Lentinula edodes grown on different substrates. 

Fatty acids Control C Significance

C14:0 0.190 ± 0.040 0.260 ± 0.031 NS

C15:0 1.68 ± 0.73 1.48 ± 0.28 NS

C16:0 14.24 ± 1.41 13.75 ± 0.72 NS

C16:1(n-7c) 0.340 ± 0.071 0.361 ± 0.030 NS

C18:0 1.57 ± 0.45 0.75 ± 0.04 NS

C18:1(n-9c) 1.62 ± 0.24 1.75 ± 0.35 NS

C18:2(n-6c) 79.88 ± 2.73 81.01 ± 1.42 NS

C18:3(n-6c) 0.47 ± 0.21 0.63 ± 0.02 NS

C14:0 (mg/100 mg) 0.003 ± 0.001 0.003 ± 0.001 NS

C15:0 (mg/100 mg) 0.029 ± 0.011 0.017 ± 0.001 NS

C16:0 (mg/100 mg) 0.246 ± 0.002 0.164 ± 0.025 *

C16:1(n-7c) (mg/100 mg) 0.006 ± 0.001 0.004 ± 0.001 NS

C18:0 (mg/100 mg) 0.027 ± 0.005 0.009 ± 0.001 *

C18:1(n-9) (mg/100 mg) 0.028 ±0.001 0.021 ± 0.000 *

C18:2(n-6c) (mg/100 mg) 1.388 ± 0.194 0.973 ± 0.217 NS

C18:3(n-6c) (mg/100 mg) 0.008 ± 0.004 0.008 ± 0.002 NS

Lipid indices 

Total 1.735 ± 0.184 1.199 ± 0.246 NS

SFA 0.304 ± 0.013 0.193 ± 0.027 *

MUFA 0.034 ± 0.002 0.025 ± 0.001 *

PUFA 1.397 ± 0.199 0.981 ± 0.218 NS

ω6 1.4 ± 0.2 0.98 ± 0.22 NS

UFA 1.43 ± 0.197 1.005 ± 0.219 NS

SFA/UFA 0.215 ± 0.039 0.194 ± 0.015 NS

MUFA = sum of  all monounsaturated fatty acids; PUFA = sum of  all polyunsaturated fatty acids; SFA = sum of  all saturated fatty acids; UFA = 
MUFA + PUFA; SFA/UFA = ratio of  total saturated fatty acids/total monounsaturated fatty acids + total polyunsaturated fatty acids. Values are 
shown as means ± standard deviation. 
Significance: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; NS = not significant.

Figure 1. Scattering the data of fatty acids and lipid indices by the first two principal components (PC1 and PC2) analysis of 
fungi grow on brewery by-products. (A) Biplot of the first two components created, considering fatty acids and lipid indices; 
(B) Rotated principal scores of fungi and their corresponding substrates projected into the first two principal components. 
P_control:  P. ostreatus grown on the control substrate; P_C: P. ostreatus grown on C substrate; P_D:  P. ostreatus grown on  
D substrate; L_control:  L. edodes grown on control substrate; L_C: L. edodes grown on C substrate.
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rapeseeds, and olives) characterized by β-sitosterol and 
campesterol as the predominant phytosterols (Yang et al.,  
2019). Furthermore, both fungi had relevant amounts 
of total phytosterol comparable to soybean, peanut, and 
olive oils (~0.300 mg/100 mg) but lower than rice bran 
(1.89 mg/100 mg), corn (0.990 mg/100 mg), and rapeseed 
oils (0.893 mg/100 g) (Yang et al., 2019). 

Conclusion

To conclude, the use of brewery by-products as sub-
strates was efficient to ensure the fungal growth. Fatty 
acids composition was significantly impacted by fungal 
strain and substrate formulation. In P. ostreatus biomass, 
six fatty acids were found, where C18:2 (n-6c) was the 
most dominant. As for L. edodes, eight fatty acids were 
identified, with C18:2 (n-6c) being the most abundant. 
Interestingly, both fungi used in this study resulted in dif-
ferent fatty acids profiles that are comparable to vegeta-
ble oils with the advantage of having low SFA/UFA ratios. 
Sterols profile showed that regardless of the fungal strain, 
no significant differences were found among sterols as 
a function of substrate except for estigmastanol (P. ost-
reatus). Ergosterol was found as the primary sterol sug-
gesting the potential valorization of these biomasses as a 
source of vitamin D. In addition, fungal biomass showed a 
low cholesterol level suggesting the cholesterol-lowering  
effect of fungus. This might be used as a mitigation strat-
egy and thus valorize a wider range of by-products having 
a high initial cholesterol. Overall, these findings confirm 
the efficiency of fungi as bioconvertors of agro-industrial 
by-products to produce fats with interesting properties. 
More investigations are required to determine their func-
tionality and applicability as a nonanimal fat substitute in 
food reformulation. 
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in the control, indicating that growing fungi on by- 
products ensured a low cholesterol, possibly due to the 
degradation of cholesterol deriving from the substrate by 
fungi to use for their metabolism (El-Gendy et al., 2016; 
Hyde et al., 2019). This aligns with the evidence from 
previous studies that indicated the effectiveness of fungi 
in lowering cholesterol levels (Keong 2015). 

Irrespective of substrate, P. ostreatus profile was char-
acterized by the predominance of ergosterol and camp-
esterol, and traces of other phytosterols and cholesterol 
similar to that of L. edodes. The amount of ergosterol was 
double that of fungi cultivated on sugarcane bagasse–
based substrates (Cardoso et al., 2020), this finding was 
in alignment with that of the data reported in a system-
atic review by Weete et al., (2010). Ergosterol is a metab-
olite synthesized by fungi, which cannot be synthesized 
by plants (Baur et al., 2016). This suggests the potential 
valorization of these biomasses as a source of vitamin D 
in contrary to most vegetable oils (e.g., peanut, soybean, 

Table 5. Concentration (mg/g) of phytosterols and cholesterol in 
Pleurotus ostreatus biomasses as a function of substrate.

Control C D Significance

Cholesterol 0.043 ± 
0.032

0.032 ± 
0.018

0.027 ±  
0.006

NS

Ergosterol 0.252 ± 
0.035

0.190 ± 
0.064

0.223 ±  
0.020

NS

Campesterol 0.059 ± 
0.019

0.025 ± 
0.006

0.038 ±  
0.014

NS

Stigmaesterol 0.002 ± 
0.003

n.d. n.d. NS

ß-sitoesterol 0.018 ± 
0.003

0.009 ± 
0.001

0.013 ±  
0.012

NS

Estigmastanol 0.02 ± 
0.011b

0.001 ± 
0.002a

0.003 ±  
0.002a

**

Values are shown as means ± standard deviation. 
Means within a row with different letter differ significantly, *P ≤ 
0.05; **P ≤ 0.01; ***P ≤ 0.001; NS = not significant.

Table 6. Concentration (mg/g) of phytosterols and cholesterol in 
Lentinula edodes biomasses as a function of substrate.

Control C Significance

Cholesterol 0.048 ± 0.006 0.011 ± 0.004 *

Ergosterol 0.225 ± 0.117 0.274 ± 0.072 NS

Campesterol 0.070 ± 0.001 0.124 ± 0.018 *

Stigmaesterol n.d. 0.019 ± 0.018 NS

ß-sitoesterol 0.056 ± 0.032 0.063 ± 0.019 NS

Estigmastanol 0.017 ± 0.015 0.029 ± 0.004 NS

Values are shown as means ± standard deviation. 
Significance: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; NS = not 
significant.
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