
 
 
 
 

 
 
 
 
 
 
 

 

 

This is the peer reviewed version of the following article: da Cunha, Larissa, Kayane 

Pereira Besen, Nandara Soares de Oliveira, Fernanda Regina Delziovo, Rafaela Gomes, 

Júlia Montibeller da Cruz, Fernanda Picoli, Enric Gisbert, Everton Skoronski, and Thiago 

El Hadi Perez Fabregat. 2022. “Fermented soybean meal can partially replace fishmeal 

and improve the intestinal condition of goldfish juveniles reared in a biofloc system”. 

Aquaculture Research. doi: 10.1111/are.16147, which has been published in final form 

at https://doi.org/10.1111/are.16147. This article may be used for non-commercial 

purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived 

Versions http://www.wileyauthors.com/self-archiving. 
 
 
 

Document downloaded from: 
 

 
 
 

https://doi.org/10.1111/are.16147
https://doi.org/10.1111/are.16147
http://www.wileyauthors.com/self-archiving
http://repositori.irta.cat/


Fermented soybean meal can partially replace fishmeal and improve the 

intestinal condition of goldfish juveniles reared in a biofloc system 

Larissa da Cunha1, Kayane Pereira Besen1, Nandara Soares de Oliveira1, Fernanda Regina 

Delziovo1, Rafaela Gomes1, Júlia Montibeller da Cruz1, Fernanda Picoli1, Enric Gisbert2, Everton 

Skoronski1, Thiago El Hadi Perez Fabregat1 

1 Universidade do Estado de Santa Catarina – UDESC, Lages, Brasil  
2 IRTA, Aquaculture Program, Centre de Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain 

 

Abstract 

This study evaluated the effects of different dietary inclusion levels of fermented soybean meal 

(FSM) as replacement for fish meal and their effects on the productive performance and 

intestinal condition of goldfish (Carassius auratus) produced in biofloc (BFT) system. Five 

isoproteic (39.5% crude protein) and isoenergetic diets (4250 kcal kg−1 of crude energy) were 

formulated with FSM inclusion levels of 0%, 7%, 14%, 21% and 28% (0, 11, 22, 32 and 43 fish 

meal replacement). A total of 400 goldfish (0.25 ± 0.02 g) were weighed and distributed in 20 

glass aquariums (15 L). Fish were fed twice daily for 56 days. The diet with FSM inclusion level 

of 28% reduced the weight gain and the specific growth rate and increased the feed conversion 

of the goldfish. Diets with FSM inclusion levels of 21% and 28% increased the α-amylase activity 

in the fish intestine. The diet with FSM inclusion level of 21% increased total height of the 

intestinal villi of the goldfish. In conclusion, the inclusion of up to 21% of FSM can replace 

fishmeal without affecting the growth of goldfish juveniles reared in BFT system. Fish fed 21% 

of FSM showed evidence of improvement in the intestinal health. 

 

1. INTRODUCTION 

The biofloc technology (BFT) system is an intensive rearing environment with low water renewal 

that is successfully used in the sustainable production of fish and shrimp (Crab et al., 2012). The 

input of sources rich in organic carbon in BFT units stimulates the proliferation of heterotrophic 

microorganisms (Avnimelech, 2007). Heterotrophic bacteria transform nitrogenous compounds 

present in the cultivation water into microbial biomass that can serve as a supplementary food 

source for the cultivated species (Avnimelech, 1999; Azim & Little, 2008; Li et al., 2018; 

Najdegerami et al., 2016). The BFT system has already been validated for different species of 

fish such as tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus), South American 

catfish (Rhamdia quelen), goldfish (Carassius auratus) (Bakar et al., 2015; Battisti et al., 2020; 

Cunha et al., 2020; Long et al., 2015; Wang et al., 2015). Positive results were obtained in terms 

of growth, feed conversion (Ahmad et al., 2016; Luo et al., 2014) and survival rate (Ekasari et al., 

2015; Pérez-Fuentes et al., 2016). 

The intensification of aquaculture production systems can lead to stressful conditions for 

animals. Prolonged stress may influence the health of the target organism and cause outbreaks 

of diseases and mortality (Mohapatra et al., 2013). Similar to other intensive systems, the BFT 

system is prone to husbandry conditions that can cause stress to the animals. These conditions 

include peaks in nitrogen compounds (Fischer et al., 2020; Serra et al., 2015), low dissolved 

oxygen levels (Fischer et al., 2020) and an excess in suspended solids (Long et al., 2015; Ray et 

al., 2010; Romano et al., 2020). In this scenario, the aquaculture feed industry has given focus 

to developing additives and functional ingredients and meals as a strategy to mitigate the 



harmful effects of stress (Dawood et al., 2019, 2020). The use of fermented aquaculture feeds 

was recently developed and has shown promising results related to fish health in standard 

rearing systems (Azarm & Lee, 2014; Dawood et al., 2020; Novriadi et al., 2018; Sotoudeh et al., 

2016). However, no information exists regarding the use of fermented feeds in BFT systems. The 

microbial fermentation of foods produces bioactive compounds that offer several health 

benefits (Hayes & GarcíaVaquero, 2016). During the fermentation process, microorganisms 

degrade protein macromolecules into soluble compounds of low molecular weight, which are 

more easily absorbed and digested (Azarm & Lee, 2014). These microorganisms break down 

protein chains into small chains of amino acids and peptides, which can bring health benefits to 

the organism (Sanjukta & Rai, 2016). In addition, microbial fermentation produces secondary 

metabolites with prebiotic action and promotes the growth of beneficial microorganism 

populations with probiotic functions (Dawood & Koshio, 2020; Mukherjee et al., 2016; 

Nwachukwu et al., 2019; Zhang et al., 2014). In this scenario, soybean meal is considered an 

excellent substrate to produce functional feeds due to its low cost and high nutritional value 

(Olmos et al., 2015). Fermented soybean meal (FSM) has been evaluated as a substitute for 

fishmeal and as a functional ingredient in aquafeeds (Liet al., 2020; Rahimnejad et al., 2019; 

Wang et al., 2016). The partial replacement of fishmeal by FSM has shown no negative effects 

on fish growth (Hassaan et al., 2015; Jiang et al., 2018; Lee et al., 2016; Li et al., 2020; Liang et 

al., 2017; Rahimnejad et al., 2019). FSM has better digestibility and has shown higher protein 

content and higher levels of amino acids when compared with raw soybean meal (Liet al., 2019; 

Olmos et al., 2015; Shiu, Wong, et al., 2015), which may result in better animal growth 

performance and feed efficiency parameters (Hassaan et al., 2015; Jiang et al., 2018). In 

addition, numerous beneficial effects of FSM inclusion in diets on fish health have been found, 

such as: increased antioxidant capacity (Azarm & Lee, 2014; Hassaan et al., 2015; Jiang et al., 

2018; Lee et al., 2016; Wang et al., 2016), modulation of microbiota, decreased inflammation 

and increased intestinal villi size (Li et al., 2020; Novriadi et al., 2018; Rahimnejad et al., 2019; 

Refstie et al., 2005; Yamamoto et al., 2010), as well as modulating the activity of digestive 

enzymes (Shiu et al., 2015b; Sotoudeh et al., 2016). Ornamental fish farming generates annually 

more than 300 million dollars (Mohammad et al., 2018) and is an important source of income 

for small producers (Goswami & Zade, 2015). The goldfish (Carassius auratus) is one of the most 

popular and produced ornamental fish in the world. This is an omnivorous species (Sales & 

Janssens, 2003), and its feeding preferences consist mainly of plant materials, debris, benthic 

organisms, mosquito larvae, microalgae and zooplankton (Penttinen & Holopainen, 1992; 

Sarbahi, 1951). The replacement of animal protein was not evaluated in the goldfish diet, but 

for a similar species (Carassius auratus gibeo), the inclusion of soybean meal even at lower levels 

(14.6%) compromised performance (Liu et al., 2016). Goldfish production in BFT systems has 

shown better control of water quality and improved animal growth when compared with the 

clear water production system (Besen et al., 2021; Faizullah et al., 2015; Wang et al., 2015). The 

BFT system has recently shown to increase the activity of digestive enzymes of goldfish (Yu et 

al., 2020), but the use of alternative feed ingredients for replacing conventional fish meal, as 

well as ingredients that may promote intestinal health, remains to be evaluated. The potential 

of using fermented foods for goldfish in a BFT system remains unknown, information that would 

be of value when testing new functional feed ingredients under sustainable farming systems. 

Thus, the objective of the present study was to evaluate the effects of different inclusion levels 

of FSM in the diets as a replacement for fish meal and its effects on the productive performance 

and intestinal health of goldfish produced in a BFT system. 

 



2. MATERIAL S AND METHODS 

The experiment was carried out over a period of 56 days at the Pisciculture Laboratory of the 

University of the State of Santa Catarina (UDESC), Lages, SC, Brazil. The study was approved by 

the Ethics Committee on the Use of Animals (CEUA) of UDESC (protocol number 8490131020). 

The experimental design was completely randomized with five treatments and four replications. 

The treatments corresponded to the FSM inclusion levels in the diets (0%, 7%, 14%, 21% and 

28%). 

2.1. Fermented soybean meal 

Soybean meal was fermented with inoculants of the lactic acid bacteria Lactobacillus acidophilus 

using the methodology adapted from Azarm and Lee (2014). Isolated inoculum from the brand 

Aché® was used (Lactobacillus acidophilus LA14; 1 × 109 UFC g−1). Soybean meal was purchased 

from a local supplier and the bacteria from a commercial establishment. Deionized water was 

added to autoclaved samples (100°C for 20 min) of soybean meal for 50% humidity and 

inoculated with 44 g of bacteria (109 CFU) for each kilogram of soybean meal. The samples were 

mixed and placed in trays, maintaining a maximum height of two centimetres of sample per tray. 

The fermentation of soybean meal was carried out in an incubator at 36°C for 48 h. The humidity 

was corrected every 12 h, and the samples were mixed again. Afterwards, the fermented 

material was dried in an incubator (36°C) until reaching constant weight and subsequently kept 

in a freezer (−20°C). Samples of FSM were collected to analyse the nutritional composition 

(AOAC, 2000) and their amino acid profile (White et al., 1986) (Table 1). Samples were also 

collected for analysis of total lactic acid bacteria (Vieira & Tôrres, 2004), Ph (AOAC, 2000), 

enzyme activity (García-Careño & Haard, 1993; Métais & Bieth, 1968) and soluble protein 

(Bradford, 1976) (Table 2).  

2.2. Experimental diets 

Five isoprotein (39.5% crude protein) and isoenergetic diets (ca.4250 kcal kg−1) were 

formulated (Table 3) according to the nutritional requirements of the goldfish (Bandyopadhyay 

et al., 2005). FSM was added to diets to substitute fishmeal at the inclusion levels of 0%, 7%, 

14%, 21% and 28%, which represented 0%, 11%, 22%, 32% and 43% fish meal replacement 

respectively. Dietary levels of crude lipids ranged from 12.1% to 8.4%. The adjustment in the 

lipids levels was necessary to balance the energy levels of the diets. In addition to fermented 

soybean meal, diets were formulated using fishmeal and soybean meal as the main protein 

sources and using soybean oil, corn meal and wheat flour as energy sources. Marine fishmeal 

was purchased from Agroforte® (Laguna, Santa Catarina, Brazil), and the other ingredients were 

purchased from local suppliers. The diets were supplemented with the amino acids of arginine, 

lysine (Infinity Pharma®, Campinas, São Paulo, Brazil) and methionine (Florien Fitoativos®, 

Piracicaba, São Paulo, Brazil) to meet the amino acid requirements of goldfish (Gatlin III, 1987) 

(Table 4). All of the ingredients were ground in a blender and sieved to obtain particles smaller 

than 0.71 mm. The ingredients were mixed and pelleted with water (30%) and dried at 36°C in 

an incubator for 48 h. 



 



 

The diets were then crushed and sieved to obtain the desired particle size for feeding (~1.5 mm) 

and were stored in a freezer (−20°C) until use in the experiment. The chemical composition of 

the diets was analysed according to the AOAC (2000). 

2.3. Animals and facilities 

A total of 400 goldfish (0.25 ± 0.02 g, mean ± standard deviation) were obtained from our 

laboratory broodstock held at Pisciculture Laboratory (UDESC, Brazil). Goldfish were acclimated 

to the experimental conditions for 14 days. During this period, the fish were kept in aquaria (30 L 

of functional volume; 40 fish per aquarium) connected to a water recirculation system equipped 

with a mechanical and biological filter. Fish were fed twice daily (at 10:00 and 16:00) until 

apparent satiation with the control diet formulated for the experiment (Table 1). At the end of 

the acclimatization period, goldish were weighed individually and distributed in 20 glass 

aquariums (15 L of functional volume) at a density of 20 fish per aquarium. Fish were fed twice 

daily as previously described. Biometric analyses were performed every 2 weeks to adjust the 

feed ration in relation to the stocked biomass. Feed was administered at a rate of 10% of the 

live weight per day for the first 2 weeks, 8% of the live weight per day for the following 2 weeks 

and 6% of the live weight per day in the last 2 weeks (Wang et al., 2015). Bioflocs were produced 

prior to the experimental period to obtain a mature culture media and stable water quality. The 

production of the heterotrophic medium was carried out in a 500 L tank with Nile tilapia 

(Oreochromis niloticus) that were fed with commercial feed (40% crude protein and 5 mm pellet 

diameter; Supra, Alisul Alimentos S.A., Brazil). The water temperature was kept constant (±22°C) 

using heaters equipped with thermostats, and a compressor system provided the aeration. This 

system was assembled to provide an up-flow air injection in the tank, which gentle stirred the 

water and kept the bioflocs in suspension. The C:N ratio was 20:1, which is considered as ideal 

for the Nile Tilapia (PérezFuentes et al., 2016). The system was fertilized daily with molasses 

(38% carbon) as the organic carbon source as described in Schryver et al. (2008). This 

methodology is based on the assumption that fish assimilate approximately 25% of the nitrogen 

from the feed and that the remaining 75% are converted to total ammonia nitrogen (TAN) in the 

water. At the beginning of the experiment, 50% of the useful volume of the aquaria was water 

obtained from a BFT system in which Nile tilapia was cultured, and the other 50% of the volume 

was clear water. Molasses (38% carbon) was added every 3 days (at 14:00) in each aquarium as 



an additional carbon source to maintain a C/N ratio of 20:1 (Wang et al., 2015), according to the 

calculations proposed by Schryver et al. (2008). No water renewal was performed, but water 

was added to compensate for evaporation. The temperature was kept constant using heaters 

with thermostats, and the water was oxygenated using porous stones connected to silicone 

hoses (4 mm) and an air compressor. The hoses were glued to the bottom of the aquariums to 

force air to be injected from the bottom up, allowing for greater movement of the water. The 

photoperiod was 12 h of light and 12 h of darkness. 

 

 

2.4. Water quality 

Temperature, pH (Hanna HI98130) and dissolved oxygen (Hanna HI9147-10) were monitored 

daily. Total ammonia nitrogen (TAN), nitrite, nitrate, total suspended solids (TSS) (Rice et al., 

2012) and turbidity (Hanna HI93703C) were monitored weekly. Salinity was maintained at 

around 4 g−1 (Luz et al., 2008) in all aquariums throughout the experimental period. The water 

quality parameters remained stable throughout the experiment, and the average values are 

listed in Table 5. All parameters remained within the recommended ranges for fish farming 

(Avnimelech, 2012; Boyd, 1998). 



 

2.5. Productive performance and sample collection  

At the beginning of the experiment and at 56 days, all fish were fasted for 24 h, anesthetized 

with eugenol (50 mg L−1) (Bittencourt et al., 2012) and weighed individually. Productive 

performance was analysed based on the following parameters: weight gain (WG = final average 

weight (g) − initial average weight (g)), specific growth rate (SGR, % day−1 = [(ln final weight 

(g) − ln initial weight (g))/experimental period] * 100) and apparent feed conversion rate (FCR = 

feed administration in grams/total weight gain). Mortality was recorded to assess the survival 

rate (S, % = [total animals at the end/total animals at the beginning] * 100). After weighing at 

56 days, some animals were anesthetized with eugenol (50 mg L−1) and then euthanized by 

spinal section to collect biological materials for the analyses described below. 

2.6. Microbiological analyses 

The digestive tract of one fish from each aquarium (n = 4 fish per treatment) was sampled to 

assess the intestinal microbiota using classical methods adapted from Vieira and Tôrres (2004). 

The intestines were removed, weighed, ground, homogenized and diluted serially (1:10) in test 

tubes containing sterile saline (0.65%). Then, the intestinal homogenates were seeded in Petri 

dishes with MRS (Man Rogosa Sharpe) agar and TSA (tryptic soy agar) to quantify total lactic acid 

and heterotrophic bacteria respectively. The intestinal homogenates seeded in the Petri dishes 

were placed in an incubator at 35°C. Colony-forming units (log CFU) were counted after 24 h of 

incubation in the TSA medium and after 48 h in the MRS medium. 

2.7. Intestinal morphometry 

Histological analysis of the intestine was performed on two fish from each aquarium (n = 8 fish 

per treatment). Portions of approximately 3 cm in length were collected from the midgut, and 

each sample was fixed in a 10% buffered formalin solution for 24 h, dehydrated in an ascending 

series of alcohols, diaphanized in xylene, embedded in paraffin and cut into sections of 5 μm for 

slide preparation. These samples were then stained according to the PAS (periodic acidSchiff) 

staining method. The slides were observed under an optical microscope (OptiCam, 10×) and 

photographed using a digital camera (Moticam 2300, 3 MP, resolution 3264 × 2448 pixels). Eight 

villi per animal were selected by integrity criteria. The total height and width of the villi (Figure 

1) were measured using the ToupTek ToupView- x64 image analyser software, version 

2270/07/03. 

 

 



2.8. Enzymatic analyses 

The activities of α-amylase and total alkaline proteases were assessed using the intestines of 

two fish from each aquarium (n = 8 fish per treatment). After euthanasia, fish were immediately 

placed on ice and dissected to separate the intestine. The intestines were washed with distilled 

water and immediately frozen at −80°C until the analysis. At the time of analysis, the intestines 

were cut into small pieces and placed in 2 ml Eppendorf tubes, where they were diluted in cold 

distilled water (1:10, w/v). The Eppendorf tubes were submitted to ultrasonic baths for 5 min (5 

times of 1 min with intervals of 1 min in an ice bath) for rupture of intestinal cells and release of 

digestive enzymes. Subsequently, the intestinal homogenates were centrifuged at 7000 rpm for 

10 min (4°C), and the supernatants were separated and used to determine the activity of 

digestive enzymes. 

Alpha-amylase activity was measured at λ = 580 nm using soluble starch dissolved (0.3%) in a 

Na2HPO4 buffer solution (pH 7.4) as substrate (Métais & Bieth, 1968). A unit of α-amylase 

activity (U) was defined as the amount of enzyme that catalyses the hydrolysis of 1 mg of starch 

in 30 min at 37°C per millilitre of enzymatic extract. Total alkaline protease activity was 

determined after 30 min of incubation at 25°C, using 0.5% (w/v) casein as a substrate in 50 mM 

Tris–HCl (pH 8.0). The reaction was stopped with trichloroacetic acid (20% w/v), the extract was 

centrifuged (5000 rpm, 20 min), and the absorbance of the supernatant was measured at λ = 

280 nm at room temperature. A unit of protease activity (U) was defined as the amount of 

enzyme needed to catalyse the hydrolysis of 1 μmol of hydrolysed casein per minute per 

millilitre of enzymatic extract (García-Careño & Haard, 1993). The same procedures were used 

for quantifying the activity of both enzymes in FSM. 

 

 

 



2.9. Statistical analyses 

All data were subjected to tests of error normality (Shapiro–Wilk) and variances 

homoscedasticity (Levene). The percentage values were arcsine transformed prior their analysis. 

The results were analysed using the parametric analysis of variance (ANOVA) and using a 

corresponding test to compare the means at the 5% level of significance. When significant 

difference was shown, the parameters and inclusion levels of FSM in the diet were analysed 

using polynomial regression. These analyses were performed using the statistical software 

Statistic 7® (STATSOFT, 2005).  

 

3. RESULTS 

3.1. Productive performance 

Fish performance indicators in terms of growth and feed efficiency were significantly affected 

by the level of FSM in diets for goldfish reared in a BFT system. In particular, the 28% FSM 

negatively impacted on goldfish weight gain and the specific growth rate, whereas it also 

increased the apparent feed conversion when compared with the control diet (Figure 2; Table 

6; p < 0.05). Fish survival rate was over 95% in all dietary groups, and no significant differences 

in this parameter were found between treatments (p > 0.05). 

3.2. Levels of lactic acid and heterotrophic bacteria 

In the microbiological analysis of the intestine (Table 7), the amount of lactic acid bacteria 

showed a tendency not statistically significant (p = 0.1163) to increase in treatments with the 

inclusion of FSM. The inclusion of FSM in the diets had no influence on the concentration of total 

heterotrophic bacteria in the fish intestine (p > 0.05). 

3.3. Intestinal morphometry and digestive enzyme activity 

The highest values of total villi height were observed in goldfish fed the diet with 21% FSM, 

whereas the lowest ones were found in the 0% and 28% FSM groups. The rest of the 

experimental groups showed intermediate values (Figure 3; p < 0.05). The inclusion of FSM in 

the diets had no influence (p > 0.05) on the width of the intestinal villi of the fish. 

Diets with the FSM inclusion levels of 21% and 28% increased the total activity of α-amylase in 

the intestine of goldfish (Figure 4; p < 0.05). The inclusion of FSM in the diets had no influence 

on the activity of total alkaline proteases among dietary groups (p > 0.05). 

 

 

 

 



 

 

 

 

4. DISCUSSION 

The water quality parameters remained within adequate levels for the production of goldfish in 

a BFT system (Cunha et al., 2020; Wang et al., 2015; Yu et al., 2020). The addition of mature BFT 

inoculants in the experimental units prevented the occurrence of peaks of nitrogen compounds. 



Nitrate, turbidity and SST increased gradually over the course of the experiment, but with no 

evident negative impact on fish health. All water quality parameters were similar between the 

experimental groups throughout the experimental period. This is evidence that the results 

obtained in the present study are due to the supplementation of FSM in the diets and were not 

influenced by the conditions of the BFT system. In the present experimental conditions using 

BFT, the inclusion of up to 21% of FSM (32% fish meal replacement) in goldfish diets had no 

influence on the growth performance and apparent feed conversion values. This is the first study 

evaluating the inclusion of FSM in diets for this ornamental fish species and validates the 

hypothesis that fermentation is a valuable strategy for enabling higher dietary levels of inclusion 

of soybean meal in substitution for fish meal in aquafeeds. During fermentation, there were 

changes in the characteristics of soybean meal that may have contributed to the maintenance 

of results similar to those obtained with fish meal. There was an increase in intestinal lactic acid 

bacteria, which are used as a probiotic in fish feed (Selle et al., 2014). The increase in soluble 

protein indicates a higher proportion of lowmolecular-eight peptides, which can positively affect 

health and performance (Ha et al., 2019; Khosravi et al., 2015). Furthermore, it should be noted 

that the effects of the FSM may have been enhanced using the BFT system, and this still needs 

to be better understood. In addition to the effects of direct ingestion by the fish, probiotic 

microorganisms and bioactive compounds present in fermented products can also affect the 

quality of bioflocs, with secondary effects on fish performance and health (Bañuelos-Vargas et 

al., 2021; Kathia et al., 2018). The diet with the highest level of inclusion of FSM (28%) reduced 

growth performance and increased feed conversion values in goldfish. Similarly, FSM inclusion 

levels between 21% and 39% resulted in decreased performance and increased feed conversion 

of other fish species, such as the grouper (E. coioides) (Shiu et al., 2015b), the Japanese sea bass 

(Lateolabrax japonicus) (Rahimnejad et al., 2019), the rainbow trout (Oncorhynchus mykiss) 

(Choi et al., 2020) and the largemouth bass (Micropterus salmoides) (He et al., 2020). 

Considering that the amino acid requirements were met in all treatments, indicating no 

problems in relation to possible deficiencies, we hypothesize that an excess of soluble protein 

in the diet from the greater inclusion of FSM may have caused the decrease in goldfish 

performance. High inclusions of soluble peptides and amino acids may have led to saturation of 

the intestinal transport mechanisms (Cahu et al., 1999; Tonheim et al., 2005; Wei et al., 2020), 

which can result in an unbalanced absorption of amino acids and a reduction in the use of dietary 

protein (Aragão et al., 2004; Kolkovski & Tandler, 2000). Further research regarding the effects 

of high dietary levels of FSM on nutrient absorption and digestibility needs to be conducted in 

order to further understand the poorer results obtained by the 28% FSM, with regard to growth 

and feed utilization indices. Goldfish fed diets with FSM showed a tendency, even though not 

significant, to increase the amount of Lactobacillus sp. in the intestine when compared with the 

control treatment. Recent studies suggest that supplementing diets with FSM improves the 

composition of intestinal microbiota in fish (Catalán et al., 2018; He et al., 2020; Li et al., 2020). 

Although most fermentation bacteria are killed during the drying process of FSM, residues of 

dead bacteria and their metabolites may promote improvements in the intestinal microbiota in 

fish and potentially have a pre and probiotic effect on the host (Dawood & Koshio, 2020; He et 

al., 2020). The use of inactivated microorganisms, known as paraprobiotics, has shown similar 

results when compared with the administration of live probiotics (Choudhury & Kamilya, 2019). 

The microbiological results of the present study can be considered preliminary, with the need 

for further validation. The small number of samples (n = 4) limited the degrees of freedom of 

the ANOVA and may have influenced the absence of significant differences between treatments. 

However, the potential beneficial effects of rearing fish using BFT (Abakari et al., 2021; Santos 

et al., 2021) may have also masked the positive effects of FSM on enhancing acid lactic bacterial 



populations in goldfish gut due to the microbial characteristics of the BFT system (Avnimelech, 

2007). In this sense, further studies with more robust microbiological analyses using massive 

sequencing techniques are necessary to describe the different types of microorganisms and 

confirm the results obtained. 

The FSM inclusion level of 21% increased the height of the intestinal villi of the goldfish. This 

results in a larger surface for nutrient absorption and may improve the integrity of the intestinal 

epithelium of fish. Previous studies have shown that fermentation of soybean meal protects fish 

from possible morphological damage to the intestine (i.e., enteritis), which is usually induced by 

antinutritional compounds and allergens present in raw soybean meal (Choi et al., 2020; He et 

al., 2020; Wang et al., 2016). The present study is the first to observe an improvement in the 

intestinal morphometry of fish fed with FSM. The increase in the height of the villi may be 

attributed to the possible presence of metabolites with prebiotic function in the FSM (Dawood 

& Koshio, 2020). In this sense, the increase in villi height may be linked to an improvement in 

intestinal immunity barriers (Dawood, 2021; Pirarat et al., 2011). The BFT system can also 

improve intestinal health (Long et al., 2015), and the relationship between the intestinal and 

environmental bacteria may have optimized the results. It is still necessary to evaluate the effect 

of fermented products on the composition and quality of bioflocs. Fish fed diets with FSM 

inclusion levels of 21% and 28% showed higher α-amylase activity when compared with the 

control diet. The activity of digestive enzymes in fish is influenced by several factors, such as 

feeding habits, diet composition and presence of antinutritional factors (Hidalgo et al., 1999; Li 

et al., 2019; Penttinen & Holopainen, 1992; Sarbahi, 1951). The enzymatic activity of α-amylase 

increased with the use of FSM when compared with raw soybean meal, which may be attributed 

to a reduction in ANFs in FSM. In addition, previous studies reported that the use of exogenous 

enzymes in diets increases the intestinal enzymatic activity of fish (Kumar et al., 2006; Lin et al., 

2007; Zhou et al., 2013). Thus, in this context, the higher amylolytic activity in FSM in comparison 

to the raw soybean meal may also be responsible for the higher α-amylase activity values in 

goldfish fed diets containing the higher inclusion levels of FSM (21% and 28%). Supplementation 

with FSM in diets had no effects on the activity of total alkaline proteases in goldfish. This is a 

positive result when considering that raw soybean meal contains antinutritional factors and 

allergens that can decrease the activity of proteolytic enzymes in fish (Li et al., 2019; Liu et al., 

2017; Shiu et al., 2015b; Zhang et al., 2018). Fermentation of soybean meal may reduce 

antinutritional factors (Li et al., 2019), but FSM inclusion levels of over 14% decreased the 

protease activity in the intestine of the rainbow trout (Choi et al., 2020). Physiological and 

feeding habit differences between species and quality and composition of FSM between studies 

may explain the differences among studies. Further investigation is needed to understand how 

fermentation of ingredients affects antinutritional factors and intestinal enzyme activity in fish. 

5. CONCLUSION 

The inclusion of up to 21% of FSM can replace fishmeal up to 32%without affecting the growth 

performance and feed efficiency values of goldfish juveniles reared in BFT system, whereas 

higher FSM inclusion levels negatively affected growth and feed performance variables. 

Replacing fish meal by 21% inclusion of improved the intestinal condition of goldfish as data on 

enzyme activity and intestinal morphometry indicated. 
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