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Abstract: Senescence is a programmed process that involves the destruction of the photosynthesis
apparatus and the relocation of nutrients to the grain. Identifying senescence-associated genes is
essential to adapting varieties for the duration of the cultivation cycle. A genome-wide association
study (GWAS) was performed using 400 inbred maize lines with 156,164 SNPs to study the genetic
architecture of senescence-related traits and their relationship with agronomic traits. We estimated
the timing of senescence to be 45 days after anthesis in the whole plant and specifically in the husks.
A list of genes identified in a previous RNAseq experiment as involved in senescence (core senescence
genes) was used to propose candidate genes in the vicinity of the significant SNPs. Forty-six QTLs of
moderate to high effect were found for senescence traits, including specific QTLs for husk senescence.
The allele that delayed senescence primarily increased grain yield and moisture. Seven and one
significant SNPs were found in the coding and promoter regions of eight core senescence genes,
respectively. These genes could be potential candidates for generating a new variation by genome
editing for functional analysis and breeding purposes, particularly Zm00001d014796, which could be
responsible for a QTL of senescence found in multiple studies.

Keywords: maize; senescence; genome-wide association study (GWAS); QTL; candidate gene

1. Introduction

The two challenges facing the world today are food and energy. In the present situation,
the most substantial proportion of energy originates from non-renewable energy sources,
which are not sustainable and are harmful to the environment because of the high CO2
outflows that cause the greenhouse effect or global warming [1]. Utilizing plant biomass
for bioenergy is an economical way of decreasing CO2 emissions. Agricultural residues
are an interesting and attractive bioenergy feedstock since they do not rival food, and their
exploitation does not entail arable land loss. In the case of cereals, dual-purpose varieties
can be exploited using the grain for feed or food, and the stalks and cobs for bioenergy.
More experimental information about the genetic basis of traits related to the exploitation
of residuals and the correlations between residual and grain characteristics is needed to
design an efficient breeding strategy for developing dual-purpose varieties.

Maize (Zea mays L.) is an essential annual cereal crop for human food, animal feed, and
industrial use. It has a C4 photosynthesis mechanism that is very efficient and generates
a large amount of biomass. The life cycle of maize is classified into vegetative phases
(sowing to flowering), grain filling, senescence, and death. Senescence is a complex activity
that involves the degradation of the photosynthetic apparatus and many activities, such
as the breakdown of macromolecules, accumulation, redistribution, and remobilization
of nutrients, such as nitrogen [2]. There is a vertical variation profile of leaf senescence:
the leaves situated in the middle, mainly surrounding the ears, remain green for a more
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extended period [3,4]. In many commercial maize hybrids, the husks turn dry before
the remaining leaves, resulting in the appearance of all plant green, except the husk
surrounding the ears. These varieties are named stay-green, in contrast to those with earlier
senescence [5,6].

Genetic variations exist in the timing and rate of senescence [7,8]. Delays in senescence
can increase carbon assimilation, resulting in higher biomass and grain yield. The duration
of active photosynthesis in leaves is correlated with the production of plant residues in
maize (leaves, stalks, and cobs) and, therefore, impacts the utilization of residuals as
feedstock for bioenergy [9]. Dry matter accumulation increased up to 63% in the new
hybrid era of maize released in the 20th century compared to earlier (1939–1999), partly due
to the selection of late senescence (LS) hybrids [10]. However, the delay in senescence is also
associated with increased stover moisture [1], which could be detrimental for transporting
or storing agricultural residuals to produce bioenergy.

Knowledge of the genetic architecture behind the variation of leaf senescence facili-
tates the optimization of senescence characteristics for maize breeding, mainly grain and
biomass production, moisture, and nitrogen and water use efficiency [1]. QTLs distributed
along the genome have been generally found for senescence in maize through linkage
and genome-wide association mapping [11–13]. In different experiments, senescence was
measured by distinct methodologies, including visual estimation of green leaf area, mea-
surement of chlorophyll content, or the maximum quantum efficiency of Photosystem II
(PSII) (Fv/Fm), which could reflect different biological processes [14–16]. However, the
decay of photosynthetic activity during senescence was not directly measured in previous
QTL experiments.

The combination of GWAS and RNAseq provides a high resolution for disentangling
the genetic basis of complex traits, and it is widely used as a standard approach [17–19].
RNAseq studies detect individual genes that are related to the trait. Still, GWAS detects
genomic regions, not individual genes, which are related to the trait’s variation—that is,
those important in artificial selection. In addition, GWAS allows quantification of the
association between genomic regions and traits.

The primary general aim of this experiment was to study the genetic architecture of
the duration of photosynthetic activity in maize leaves using GWAS. Within this wider
purpose, a specific objective was to identify candidate genes for senescence traits by
combining GWAS and RNAseq. A second specific objective was to evaluate the relationship
between senescence and agronomic traits at the phenotypic and molecular levels. Finally, a
third specific objective was to study the genetics of husk senescence independently of the
remaining leaves.

2. Results

The Evanno test resulted in six subpopulations (k = 6) as the most significant cluster
of subpopulations (∆K) (Figure 1a). The proportion of the estimated membership of the
sub-population is shown in Figure 1b. More than 40% of inbred lines (176 genotypes) were
grouped in sub-population 3, considered a major group, and 77, 56, and 46 inbred lines
were grouped in sub-populations 1, 4, and 5, respectively.

A summary of mean phenotypic traits and individual year data is shown in Table 1,
and Supplementary Table S3, respectively, and normal distribution plots are presented
in Supplementary Figure S1. The sizable genotypic variation increases the possibility of
detecting an association between markers and senescence traits. Heritability was moderate
or high (0.6–0.9) for all traits except RM (0.14) (Table 1). The heritability of VSP was higher
than the heritability of PA (0.85 vs. 0.65). Interestingly, the variance component due to the
genotypic × year interaction was much lower than the genetic variance component in VSP
but not in PA (Table 1).
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Figure 1. (a) Evaluation of STRUCTURE outputs; (b) estimated population structure. (a) The change
in log probability of ∆K value (K); (b) the estimations of population structure at K = 6 for 400 inbred
lines. Each inbred line is represented as a vertical segment, which is partitioned into 6 colored
segments to denote estimated membership to the K cluster.

Table 1. Trait performance across years.

Trait VG 1 VGE 2 VE 3 Years 4 h2 Min 5 Max 6 Mean ± SE 7 SD 8 CV 9

VSP 1.1 0.08 0.48 3 0.85 1 5 2.52 ± 0.03 1.29 51.26
VSH 0.55 0.19 0.39 3 0.74 1 5 1.58 ± 0.02 1.04 65.82

PHVDIF 0.37 0.11 0.49 3 0.65 1 5 0.93 ± 0.02 0.99 106.19
PA 22.9 17.14 20.56 3 0.65 0 37.8 6.8 ± 0.23 8.58 126.07
SC 0.000628 0.000368 0.000945 3 0.59 0 0.32 0.03 ± 0.001 0.05 136.49
GM 1334.46 249.81 230.16 2 0.85 79.7 312 186.06 ± 1.57 49.10 26.39

GDW 260.35 117.05 226.71 2 0.6 7.72 123 53.3 ± 0.81 25.40 47.61
RM 3840.5 4671.11 6263.09 2 0.41 91.4 788 520 ± 4.26 143.98 27.68

RDW 395.33 162.58 201.62 2 0.69 9.62 161 60.14 ± 0.96 30.04 49.94
1 VG—variance of genotype; 2 VGE—the interaction of genotype and year variance; 3 VE—variance of residual;
4 Years—number of years; 5 Min.—minimum value; 6 Max—maximum value; 7 SE—standard error; 8 SD—standard
deviation; 9 CV—coefficient of variance; h2—heritability of trait; Trait: VSP—visual scale of a plant (1–5) at
45 DAA; VSH—visual scale of bracts (1–5) at 45 DAA; PHVDIF—the difference between the visual scale of plant
and husk at 45 DAA; PA—photosynthesis activity (mol CO2 m−2 s−1) at 45 DAA; SC—stomatal conductance (mol
H2O m−2 s−1) at 45 DAA; GM—grain moisture (g/Kg of the total sample); GDW—grain dry weight (g/plant);
RM—residual moisture (g/Kg total sample); RDW—residual dry weight (g/plant).

Most of the lines with a VSP equal to 1 had low grain moisture and low yield (Figure 2).
In contrast, most of the lines with a VSP of 4 were at the top of the graphic, with high values
of grain moisture, and many of them with high grain yield. The lines with VSP 2 and 3 had
intermediate grain yield and moisture values. Only four lines (NC288, AusTRCF305801,
AusTRCF305802, T264) had an average VSP equal to 5, which had high moisture. There
were several exceptions to the relationship between plant visual scale and grain moisture
and yield. For example, one inbred line with a VSP equal to 1 had a relatively high yield,
and another with a VSP equal to 3 had low moisture.

Almost all genotypic and phenotypic correlations among traits were significant
(p > 0.05) (Figure 3). Regarding the genetic correlations between senescence traits, the
significant genetic correlation between VSP and PA stood out. The genetic correlation
between VSP and VSH was 0.78, which implies that about 40% of the genetic variation
in VSH is not explained by its relationship with VSP. The genetic correlations between
senescence and agronomic traits were moderate to high and positive. The correlation was
higher between senescence and residual traits than between senescence and grain traits.
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The senescence trait with higher correlations with agronomic traits was VSP (RDW-0.82,
RM-1.00, GDW-0.79, GM-0.74). In particular, there was a very high genetic correlation
between VSP and RM.
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Figure 2. Comparison of early senescence and late senescence genotypes with agronomical traits.
GM—grain moisture in grams/plant; GDW—grain dry weight in grams/plant; VSP1—genotypes
correspond to a visual scale of plant value 1 (completely dry) at 45 DAA; VSP2—genotypes correspond
to a visual scale of plant value 2 (partial green) at 45 DAA; VSP3—genotypes correspond to a
visual scale of plant value 3 (intermediate green, intermediate dry) at 45 DAA; VSP4—genotypes
corresponds to a visual scale of plant value 4 (partial dry) at 45 DAA; VSP5—genotypes corresponds
to a visual scale of plant value 5 (complete green) at 45 DAA; Red circle—exceptional genotypes to
the relationship between plant visual scale and grain moisture and yield.

2.1. Association between SNPs and Traits

We identified 46 markers significantly associated with senescence-related traits (VSP,
VSH, PA, SC, PHVDIF) distributed in all chromosomes (Table 2 and Figure 4). The allelic
effects ranged from 0.5 to 1.2 for VSP and VSH, while PHVDIF ranged from 0.4 to 0.7.
For PA, the allelic effects varied from 3 to 6 mol CO2 m−2 s−1, and for SC, they varied
from 0.01 to 0.04 mol H2O m−2 s−1. The proportion of phenotypic variance (R2) varied
between 4 and 8% across all the traits. The number of marker trait associations (MTAs)
was ten or close to ten for all senescence traits (VSP-8 MTAs, PA-8 MTAs, SC-9 MTAs,
PHVDIF-8 MTAs), except for VSH, which doubled that number (22 MTAs). Eight markers
were significant for more than one variable. Marker S6_163349566 on chromosome six
was significant for visual and quantitative variables (VSP, VSH, PA). The sign of the
allele effect was the same for the three traits; that is, the allele that increased VSP also
increased VSH and PA. S1_209120152 was also associated with a visual scale of the husk
(VSH) and a quantitative variable (PA). Again, the sign of the allele effect was coincident.
S7_139201593 (C/T), S5_214537055 (A/G), S5_167009258 (C/T), and S3_5884845 (C/T) were
significant for PA and SC. S5_147166110 (C/T) and S5_61802239 (C/T) were significant for
the two visual traits, VSP and VSH. Although S6_162646831 is the only SNP significantly
associated with senescence (VSP) p = 3.76 × 10−5, allelic effect = 0.67, and an agronomic
trait (RDW) p = 3.40 × 10−5, allelic effect = 13.83), among all forty-six combinations of the
senescence traits and the agronomic traits, the sign of the allelic effect was the same, except
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in three cases (S1_6423401, S2_184012260, S3_217840430) (Table 2). The alleles that delayed
senescence mostly increased the weight and moisture of the grain and residuals.
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Figure 3. Correlation of traits with significance of p > 0.05. (a) Phenotypic correlation; (b) genotypic
correlation. Trait: VSP—visual scale of the plant at 45 DAA; VSH—visual scale of husk leaves at 45 DAA;
PHVDIF—the difference between the visual scale of plant and husk at 45 DAA; PA—photosynthesis
activity at 45 DAA; SC—stomatal conductance at 45 DAA; GDW—grain dry weight; RDW—residual
dry weight; GM—grain moisture; RM—residual moisture.
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husk at 45 DAA; PA—photosynthesis activity at 45 DAA.
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Table 2. List of SNPs related to senescence traits in comparison with biomass traits.

S. No Marker 1 Chr 2 Site 3 Allele Sen BIOMASS

GM RM GDW RDW

Trait 4 Sig 5 Eff 6 R2 (%) 7 Sig 5 Eff 6 Sig 5 Eff 6 Sig 5 Eff 6 Sig 5 Eff 6

1 S1_100824497 1 103,203,345 C/T VSH 3.32 × 10−5 −0.54 5.11 1.71 × 10−3 −18.80 3.35 × 10−3 −42.18 1.16 × 10−2 −7.69 8.18 × 10−3 −9.24
2 S1_100903343 1 103,279,958 C/T VSH 1.63 × 10−6 −0.67 7.50 1.89 × 10−3 −19.79 1.54 × 10−3 −48.29 2.37 × 10−2 −7.29 2.49 × 10−3 −11.21
3 S1_141282152 1 143,508,124 C/T VSH 8.79 × 10−5 −0.53 4.32 7.16 × 10−3 −16.73 3.62 × 10−2 −31.01 1.17 × 10−1 −4.84 1.14 × 10−2 −8.94

4 S1_209120152 1 212,105,133 C/G VSH 5.80 × 10−6 0.79 5.84
3.86 × 10−3 22.88 5.49 × 10−2 36.59 1.04 × 10−1 6.59 4.80 × 10−4 16.33PA 7.15 × 10−6 5.41 5.75

5 S1_22259426 1 22,612,531 C/G VSH 7.98 × 10−5 −0.61 4.66 1.50 × 10−1 −10.05 7.76 × 10−1 −4.81 1.27 × 10−1 −5.48 1.78 × 10−1 −5.52
6 S1_296203927 1 301,677,536 C/T VSH 8.21 × 10−6 0.73 6.18 1.71 × 10−3 23.14 2.61 × 10−1 20.24 6.11 × 10−2 7.05 4.37 × 10−3 12.28
7 S1_63150814 1 63,980,587 C/G VSH 1.45 × 10−6 −1.16 6.87 8.87 × 10−4 −36.13 3.99 × 10−2 −53.77 1.23 × 10−1 −8.75 4.71 × 10−3 −18.45
8 S1_6423401 1 6,420,128 A/C VSH 5.05 × 10−5 0.91 5.03 9.46 × 10−2 16.81 7.62 × 10−1 −7.42 2.76 × 10−1 5.68 2.30 × 10−1 7.14
9 S2_13299973 2 13,592,073 A/C SC 5.56 × 10−5 0.03 4.85 1.17 × 10−1 16.33 3.27 × 10−2 53.83 1.07 × 10−1 8.85 4.11 × 10−3 18.20

10 S2_152505815 2 157,225,727 A/G VSP 8.92 × 10−5 0.61 4.34 5.51 × 10−3 15.09 6.05 × 10−4 46.11 4.30 × 10−2 5.71 2.75 × 10−3 9.69
11 S2_184012260 2 189,518,660 C/G PHVDIF 6.45 × 10−5 −0.46 5.29 2.03 × 10−1 −7.86 2.05 × 10−2 −34.66 6.02 × 10−1 1.61 1.04 × 10−1 −5.74
12 S2_2088378 2 2,085,417 C/G PA 3.43 × 10−5 −3.33 5.59 8.89 × 10−2 −9.28 2.79 × 10−3 −39.55 1.34 × 10−2 −6.94 2.19 × 10−3 −9.87
13 S2_42234632 2 44,077,439 A/G PHVDIF 3.21 × 10−5 −0.65 5.22 1.54 × 10−2 −19.51 1.89 × 10−2 −46.97 2.25 × 10−2 −9.50 4.14 × 10−4 −16.88
14 S3_148031626 3 149,339,963 C/T PHVDIF 5.25 × 10−6 0.68 6.70 2.53 × 10−2 17.76 2.56 × 10−1 21.75 5.01 × 10−2 7.96 1.16 × 10−1 7.33
15 S3_151970626 3 153,385,457 A/G PHVDIF 6.27 × 10−6 0.44 6.19 1.02 × 10−2 13.24 1.39 × 10−1 18.53 8.31 × 10−2 4.56 3.27 × 10−1 2.94
16 S3_217840430 3 221,449,552 G/T VSH 3.73 × 10−6 −1.04 7.38 5.42 × 10−3 −27.78 4.54 × 10−4 −87.79 5.13 × 10−1 −3.44 8.70 × 10−1 0.98
17 S3_223310403 3 227,056,710 A/C VSH 8.54 × 10−5 −0.54 5.54 5.63 × 10−2 −11.91 4.63 × 10−1 −11.17 2.64 × 10−1 −3.58 3.66 × 10−1 −3.29

18 S3_5884845 3 5,057,742 C/T PA 3.45 × 10−5 −3.42 5.39
1.32 × 10−4 −21.65 3.25 × 10−3 −40.11 5.01 × 10−2 −5.52 5.46 × 10−3 −8.99

SC 1.07 × 10−5 −0.02 6.01
19 S4_181727580 4 184,669,210 A/C VSH 6.93 × 10−5 −0.48 4.91 2.36 × 10−2 −12.46 3.65 × 10−3 −38.16 3.38 × 10−2 −5.87 4.60 × 10−2 −6.34
20 S4_202887002 4 207,316,178 A/T VSP 5.65 × 10−5 1.20 4.86 7.34 × 10−3 27.74 4.95 × 10−3 72.45 1.29 × 10−2 13.28 2.09 × 10−3 18.73
21 S5_154600488 5 158,376,423 A/G PA 3.36 × 10−5 −4.15 5.45 3.84 × 10−2 −15.06 1.31 × 10−2 −42.16 3.28 × 10−3 −10.55 2.39 × 10−2 −9.32

22 S5_147166110 5 150,672,499 C/T VSP 1.69 × 10−5 −0.85 5.97
1.12 × 10−3 −22.69 3.55 × 10−3 −47.37 5.24 × 10−2 −6.61 2.48 × 10−2 −8.81

VSH 4.83 × 10−6 −0.69 6.76

23 S5_167009258 5 170,916,787 C/T PA 9.04 × 10−5 −6.48 4.78
3.87 × 10−2 −22.47 4.76 × 10−2 −53.38 9.19 × 10−2 −9.48 3.86 × 10−2 −13.27

SC 9.83 × 10−5 −0.04 4.67
24 S5_172396840 5 176,501,182 C/G VSH 4.28 × 10−5 0.61 4.86 2.19 × 10−1 8.42 3.28 × 10−2 35.03 8.99 × 10−1 0.43 1.22 × 10−1 6.04
25 S5_184169070 5 188,797,787 A/C PHVDIF 6.45 × 10−5 −0.43 5.03 1.31 × 10−1 −8.44 8.09 × 10−3 −36.42 3.63 × 10−1 −2.61 1.19 × 10−1 −5.10
26 S5_184171751 5 188,800,468 A/T PHVDIF 4.64 × 10−5 0.47 5.20 2.64 × 10−1 6.79 1.35 × 10−1 21.94 1.91 × 10−1 4.03 1.26 × 10−1 5.40
27 S5_185866560 5 190,535,974 A/G SC 4.12 × 10−5 0.03 4.94 1.51 × 10−2 20.31 5.01 × 10−2 40.18 1.71 × 10−1 5.96 2.50 × 10−1 5.73
28 S5_19709941 5 20,195,993 C/T SC 1.06 × 10−5 −0.02 5.81 1.40 × 10−1 −7.65 1.47 × 10−1 −18.29 7.24 × 10−2 −4.79 3.67 × 10−2 −6.38

29 S5_214537055 5 220,409,338 A/G PA 6.97 × 10−6 −3.80 6.49
1.74 × 10−2 −13.74 1.40 × 10−1 −20.39 5.35 × 10−3 −8.06 1.31 × 10−3 −10.66

SC 4.56 × 10−5 −0.02 5.22
30 S5_54415632 5 56,109,705 G/T VSP 6.22 × 10−5 0.89 4.74 7.52 × 10−4 26.26 1.64 × 10−4 71.22 7.50 × 10−2 7.09 1.02 × 10−3 15.10
31 S5_55394662 5 57,153,911 A/C PHVDIF 5.08 × 10−5 0.60 4.84 4.90 × 10−2 15.55 7.30 × 10−3 51.32 5.80 × 10−1 2.21 2.18 × 10−1 5.63
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Table 2. Cont.

S. No Marker 1 Chr 2 Site 3 Allele Sen BIOMASS

GM RM GDW RDW

Trait 4 Sig 5 Eff 6 R2 (%) 7 Sig 5 Eff 6 Sig 5 Eff 6 Sig 5 Eff 6 Sig 5 Eff 6

32 S5_61802239 5 63,587,555 C/T VSH 2.68 × 10−5 0.74 5.37
3.81 × 10−3 23.31 1.15 × 10−2 48.79 1.15 × 10−2 10.03 4.89 × 10−2 8.96VSP 3.78 × 10−6 1.06 6.66

33 S5_80969487 5 83,171,395 C/G VSH 2.27 × 10−5 0.53 5.83 1.64 × 10−2 13.55 1.77 × 10−2 32.46 9.38 × 10−3 7.48 2.05 × 10−3 10.17
34 S5_84063981 5 86,287,916 C/T VSP 9.09 × 10−5 0.70 4.38 4.35 × 10−3 18.00 1.86 × 10−3 46.90 4.09 × 10−3 9.05 4.77 × 10−4 12.69
35 S6_132457507 6 136,597,839 G/T PHVDIF 5.17 × 10−5 −0.47 5.24 2.47 × 10−3 −18.90 2.91 × 10−3 −44.78 3.32 × 10−2 −6.73 2.10 × 10−3 −11.14
36 S6_141797374 6 145,913,312 C/T VSH 3.08 × 10−5 0.98 5.35 7.53 × 10−3 28.34 2.91 × 10−3 77.85 2.77 × 10−1 5.93 8.92 × 10−3 16.30
37 S6_152309276 6 156,446,826 A/G VSH 7.63 × 10−5 0.57 5.25 1.24 × 10−1 10.01 2.55 × 10−1 18.05 2.21 × 10−2 7.74 1.18 × 10−2 9.68
38 S6_162646831 6 166,851,405 C/G VSP 3.76 × 10−5 0.67 5.37 4.32 × 10−4 20.14 1.29 × 10−3 43.93 1.31 × 10−2 7.15 3.40 × 10−5 13.83

39 S6_163349566 6 167,553,244 C/G
PA 4.42 × 10−5 −3.11 4.77

9.63 × 10−4 −17.46 5.71 × 10−2 −23.98 4.00 × 10−4 −9.33 3.19 × 10−3 −8.86VSP 5.26 × 10−5 −0.61 4.78
VSH 4.88 × 10−5 −0.47 4.73

40 S6_167031439 6 171,178,929 C/T VSH 6.13 × 10−5 0.87 5.41 2.51 × 10−1 11.19 8.05 × 10−1 5.90 3.30 × 10−1 5.00 2.69 × 10−2 12.95
41 S7_12615372 7 13,041,805 A/G SC 6.97 × 10−5 0.03 4.38 3.54 × 10−1 9.72 3.68 × 10−1 22.66 7.07 × 10−2 8.67 4.21 × 10−1 4.38

42 S7_139201593 7 143,942,346 C/T SC 1.99 × 10−5 0.04 5.04
9.69 × 10−2 18.18 4.29 × 10−3 77.67 1.10 × 10−1 9.23 7.35 × 10−3 17.76PA 8.37 × 10−5 6.44 4.26

43 S8_96765835 8 98,565,103 A/G SC 2.89 × 10−5 0.04 6.11 4.84 × 10−1 8.28 2.21 × 10−2 66.36 1.85 × 10−2 13.24 2.43 × 10−2 14.42
44 S9_8660567 9 8,358,103 A/G VSH 4.06 × 10−5 0.59 5.13 9.42 × 10−2 10.87 4.73 × 10−2 31.13 4.30 × 10−1 2.59 4.54 × 10−1 2.81
45 S10_141078749 10 141,806,270 G/T VSH 8.94 × 10−5 0.47 4.60 7.28 × 10−2 9.70 5.21 × 10−2 25.80 3.89 × 10−1 2.37 2.31 × 10−1 3.77
46 S10_146472807 10 147,246,775 G/T VSH 8.56 × 10−5 −0.53 4.63 1.68 × 10−4 −23.51 5.97 × 10−3 −40.65 8.11 × 10−1 −0.70 1.66 × 10−3 −10.67

1 Marker—significant SNPs for the desired trait; 2 Chr—physical chromosomal position of the marker; 3 Site—physical position of the SNP in bp; 4 Trait-GM—grain moisture;
RM—residual moisture; GDW—grain dry weight; residual dry weight; VSP—visual scale of the plant at 45 DAA; VSH—visual scale of husk at 45 DAA; PHVDIF—the difference
between the visual scale of plant and husk at 45 DAA; PA—photosynthesis activity at 45 DAA; SC—stomatal conductance at 45 DAA; 5 SIG—significance; 6 EFF—effect; 7 R2 proportion
of the phenotypic variance explained by the QTL.
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2.2. Candidate Genes

We found sixty-one genes (two genes are repeated) in the window of ±200 kb of
the significant SNPs (Supplementary Table S2). Among these, eight were included in
the core senescence genes in the analysis of [13,20] and are the genes we propose as can-
didates (Table 3). Significant SNPs were located in the coding region in all candidate
genes except S6_162646831, located in the promoter region, 119 bp far from the start-
ing position. Zm00001d014796, Zm00001d017204, and Zm00001d014642 were upregu-
lated, and Zm00001d005814, Zm00001d016802, Zm00001d038911, Zm00001d039155, and
Zm00001d026501 were downregulated during senescence. The change in expression of
all candidate genes, except Zm00001d005814, was consistent with the senescence of the
lines in the study of [13,20] (Figure 5); that is, the up- or downregulation of those genes at
senescence tended to occur earlier in the early senescence lines than in the late senescence
lines. The expression of the gene Zm0000d014796 did not upregulate after flowering in the
earliest senescence line NC292, at a difference from the other lines. However, the NC292
line already had a high expression level of this gene at flowering. In this line, the up- or
downregulation of some senescence genes started much earlier than in the other lines, even
at flowering.

2.3. Genomic Prediction Accuracies

The mean of 500 iterations of the genomic selection accuracies for the traits based on
visual scales, VSP and VSH, and PHVDIF, were 0.24, 0.20, and 0.15, respectively, while
the accuracies for the traits measured with the IRGA, PA, and SC were 0.14 and 0.08.
The accuracies of the iterations followed a normal distribution (boxplots are shown in
Supplementary Figure S2).
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Table 3. List of candidate genes with significant markers within the coding region of the gene and in the promoter region.

S. No Marker 1 Trait 2 Position 3 Gene ID 4 Start 5 Stop 6 Gene location 7 Description

1 S2_184012260 PHVDIF 189,518,660 Zm00001d005814 ** 189,518,235 189,520,622 CR Lhca6
2 S5_55394662 PHVDIF 57,153,911 Zm00001d014642 * 57,152,592 57,154,619 CR EXO70

3 S5_61802239 VSP 63,587,555 Zm00001d014796 * 63,586,418 63,588,955 CR Uncharacterized proteinVSH
4 S5_172396840 VSH 176,501,182 Zm00001d016802 ** 176,496,325 176,501,360 CR Ascorbate peroxidase (APX)

5 S5_184169070 PHVDIF 188,797,787 Zm00001d017204 * 188,797,631 188,801,896 CR Adenine
phosphoribosyltransferase 2

6 S6_162646831 VSP 166,851,405 Zm00001d038911 ** 166,851,524 166,851,829 119 bp PR Nonspecific lipid-transfer protein

7 S6_167031439 VSH 171,178,929 Zm00001d039155 ** 171,177,893 171,180,993 CR Tudor/PWWP/MBT superfamily
protein

8 S10_146472807 VSH 147,246,775 Zm00001d026501 ** 147,240,629 147,249,381 CR Glutamine synthetase%2C
chloroplastic

1 Marker—significant SNP; 2 Trait—PHVDIF, VSP, VSH. 3 Position—physical position of SNP in bp; 4 Gene ID—gene id asper B73 refgen_v4; * gene upregulation during senescence;
** gene downregulation during senescence; 5 Start—gene starting position in bp; 6 Stop—gene stop position in bp; 7 Description—general description of the gene (CR—coding region;
PR—promoter region).
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after flowering (RPKM—reads per kilobase million); FC_45—RNA-seq performed 45 days after
flowering (RPKM—reads per kilobase million); FC_60—RNA-seq performed 60 days after flow-
ering (RPKM—reads per kilobase million); FC_75—RNA-seq performed 75 days after flower-
ing (RPKM—reads per kilobase million); FC_90—RNA-seq performed 90 days after flowering
(RPKM—reads per kilobase million). PHBB3, NC292—early senescence genotypes (ES). PHT10,
PHW52, PA8637—optimum senescence genotypes (OS). PHBB9, PHW79—late senescence geno-
types (LS). (a) Zm00001d026501; (b) Zm00001d005814; (c) Zm00001d014642; (d) Zm00001d014796;
(e) Zm00001d016802; (f) Zm00001d017204; (g) Zm00001d039155; (h) Zm00001d038911.

3. Discussion

Senescence in annual crops, such as maize, involves changes in the expression of
thousands of genes and the activation and inactivation of multiple metabolic pathways [9].
At the level of leaves, senescence involves the inactivation of photosynthesis, the activation
of catabolic processes, and the transport of nutrients to developing kernels. One of the
most apparent effects of foliar senescence is the breakdown of chlorophyll accompanied by
a green color loss. Genotypes that remain green for a longer duration are named stay-green.
If the photosynthesis activity is also functional for a more extended period, it is concluded
that the stay-green is functional; if not, it is cosmetic [21]. We measured the progress
of senescence 45 days after flowering using a visual scale (VSP trait) and found genetic
variation for this trait. However, the VSP only measures the visual rating of leaf color, not
photosynthesis activity. We also measured the rate of photosynthesis activity through the
CO2 interchange per leaf area (PA trait) [22], and again, we found genetic variation.

A previous study observed that the visual color rating was correlated with chlorophyll
content per unit area and that chlorophyll content was nearly correlated with photosynthe-
sis activity [23]. Similarly, we found a very high genetic correlation between VSP and PA,
which indicates the presence of photosynthetic activity when the genotype is green. Thus,
we conclude that stay-green is mainly functional, not cosmetic, in maize, in agreement
with [20]. The heritability for PA and VSP was moderate and high, respectively [24], indi-
cating that these traits are easily changed by selection [25]. The differences in heritabilities
among the two traits are due to a higher VG and, especially, a lower VGE detected in VSP
compared to PA. If VG and VGE are relativized to VE, that is, divided by VE, the VG of
VSP is twice the value of PA, and the VGE of VSP is five times lower than PA. With a
visual scale, a general assessment of all plants, including all leaves, of a plot is carried out
swiftly. In contrast, only a small area of one leaf from two plants per plot is analyzed with
the infrared gas analyzer machine due to the limitation imposed by the relatively long
time required for each measurement. The difference in the number of leaves and plants
evaluated per plot could explain the differences in variance components between the two
traits. Therefore, to alter the duration of the photosynthesis activity in maize, it is suggested
to use a visual scale that has higher heritability and is economical and quick. Moreover,
VSP had the highest genetic correlations with agronomic traits, and we expect an effective
indirect response to agronomic traits when selected by VSP. Another possibility is that the
infrared machine, which has more precision in individual measurements, is more capable
of detecting the genotype × year interaction. This possibility deserves to be tested in a
further experiment with fewer genotypes. If this is confirmed, infrared phenotyping can be
used to integrate the genotype × year effect in the selection decision.

Although agronomical practices, such as row direction and plant spacing, have been
studied for husk senescence [26], there is scarce literature on the genetic effects on husk
senescence. We found a relatively high heritability, which indicates a substantial genetic
component. The genetic correlation between VSH and VSP was moderate to high, but there
was still a substantial part of the variation in VSH that VSP does not explain. This suggests
that there are genetic mechanisms specific to the husks. We also studied the genetic basis
of the difference between the senescence of the whole plant, mainly standard leaves, and
husks, because there is some preference for hybrids with green leaves and dried husks
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at maturity. In most genotypes, the husks had earlier senescence than standard leaves,
although they developed later, while in a few genotypes, senescence was simultaneous
in standard leaves and husks. The differential senescence in standard leaves and husks
requires coordination, which probably involves transcription factors whose activation
varies across genotypes [27].

The expected effect of extending photosynthesis activity is grain yield increment, and
we congruently found a high positive correlation between senescence traits and grain
weight. However, we also identified a high genetic correlation between senescence and
grain moisture; the delaying of senescence has a detrimental effect on grain moisture, which
is prejudicial for grain storage [28]. The optimum duration of photosynthesis activity or
the initiation of senescence, or the rate of senescence, depends on the environment. Each
environment has an optimum duration of photosynthesis, and precise knowledge of this
will better adapt the varieties to the environment. This knowledge would complement
other phenology traits as a flowering time to adapt the cycle of the varieties to the envi-
ronment [29]. For instance, in an environment with a short life cycle, farmers may prefer
genotypes showing early senescence and vice versa in a long life cycle. The general pattern
of higher moisture and yield with late senescence was evident. Still, we also identified lines
with higher or lower yields or moisture than expected by the timing or rate of senescence.
More research is needed to understand the relationship between senescence, agronomic
traits, and environments.

We expected, a priori, a substantial effect of husk senescence on agronomic traits,
particularly grain moisture, because the husks embrace the ears [6]. However, our data do
not corroborate this hypothesis, as we found that the genetic correlation of grain moisture
was even slightly higher with the senescence of the whole plant than with the senescence
of the husks. Therefore, to change grain moisture or yield to adapt the crop cycle to the
duration of the cultivation season, we recommend using a visual scale that considers the
senescence of the whole plant. Modification of the senescence of the husk could still be
important in nitrogen translocation during grain filling, as husk leaves play a crucial part
in nitrogen translocation during grain filling [5,6].

Regarding cultivating varieties for dual purposes (grain for feed and residuals for
bioenergy), we found that senescence traits are highly correlated to both the yield and
the moisture of the residuals. The senescence affects the yield of grains and residuals
in the same direction; therefore, there are no complications in improving both traits si-
multaneously. However, the adequate moisture of residuals depends on bioenergetic
use [30,31]. For instance, in biogas production, the moisture content in residuals should be
high, whereas in the case of combustion products, a low moisture content is preferable. The
use of residuals for biogas is common in Atlantic Europe; the moisture of the grain should
remain low, but the moisture of the residuals should be high [32]. These two opposite
traits could be challenging to improve because senescence modifies both traits in the same
direction as the high positive correlations shown in our experiment. Some specific lines that
we identify could be an exception to this pattern and are valuable for developing varieties
for dual purposes.

We did not find a large number of QTLs for plant senescence measured with either
the CO2 interchange or the visual scale. A high power to detect QTLs for senescence is
expected due to its high heritability [25]. Moreover, we used a liberal threshold that is
expected to decrease Type II errors and reduce the number of false negatives. The number
of QTLs we detected for senescence was similar to the number found in other senescence
experiments [33–35] and lower than the number found in other traits of high heritability,
such as flowering time [33–35]. The sizes of the allelic effects were quite large for the
senescence traits; for example, for VSP, the effects ranged between 0.6 and 1.2, while the
trait means and range were 2.5 and 4.0, respectively. Thus, a substantial change in the
trait is expected by substituting one of the VSP alleles with the alternative allele. The
relatively high allelic effects are consistent with a moderate to high percentage of variance
explained by individual QTLs. The variance explained by individual QTLs related to
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senescence in this study fell inside the wide range of values (1–10%) found in other QTL
stay-green experiments with temperate maize [33–35]. Thus, our and previous data are
consistent with a polygenic inheritance for senescence, but the trait is probably not as
highly quantitative as, for example, flowering time. The senescence’s genetic architecture
also differs from the standard quantitative model, in which QTLs are not evenly distributed
along the genome. Thus, most QTL experiments, including ours, consistently found more
QTLs for senescence in chromosomes 1 and/or 5 [11,33–36], despite the different genetic
constitution and type of the mapping populations, the experimental designs, or even the
ways of measuring senescence.

We detected QTLs related to husk senescence for the first time, and some of them did
not colocalize with QTLs for whole plant senescence, suggesting that they can be specific to
husk senescence. This is consistent with a substantial part of the genetic variation of VSH
not explained by its relation to VSP. For some of the significant SNPs, the allelic effects were
high, for example, S1_6315814 (allelic effect = 1.16) or S3_217840430 (allelic effect = 1.04).
Although VSH had lower heritability than VSP, the number of QTLs detected for VSH
doubled the number detected for VSP, suggesting a more complex genetic architecture. We
also detected QTLs for the difference between the senescence of the whole plant and husks
(PHVDIF), some of them with a relatively high allelic effect, for example, S3_148031626
(allelic effect = 0.68). The QTLs for VSH or PHVDIF with a relatively significant effect
could be useful in breeding for modifying the traits or investigating the genetic basis of
senescence in husks.

We expect that several QTLs for senescence traits colocalize with QTLs for agronomic
traits because the genetic correlation between the two types of traits is high. This was
not the case, and only in one region were QTLs for the two types of traits localized
together. However, out of 46 senescence QTLs, 43 had alleles with signs consistent with
agronomic traits. The allele that had later senescence also had a higher yield and moisture,
although the difference among the alleles for agronomic traits was not significant. The high
consistency of the signs suggests a true association among several QTLs for both kinds of
traits. However, we cannot have high confidence in any specific association, except one,
because of the low probability associated with agronomic QTLs. The relatively large size of
our mapping population has two opposite effects on the estimation of the QTL effects and
years: an increment in precision due to the higher number of recombinants but a decrement
in precision due to a higher experimental error. The experimental error could also explain
the lack of strong significance of the senescence QTLs, despite the relatively large effects.
The larger sizes of the field experiments limit the rise in precision achieved by increasing
the number of genotypes in the association panels. Nowadays, when the limitation of
insufficient genome coverage with molecular markers seems to be overcome, increasing
the precision of phenotyping in field experiments is an active area of research [37,38].

The accuracy of genomic selection was higher for VSP than for PA, which was expected
given its high heritability. The magnitude of the accuracy of genomic selection for VSP
was in the range of traits, such as grain yield in maize [25]. Therefore, selection based
only on molecular markers could be effective for senescence-related traits. The efficiency
of phenotypic selection relative to genomic selection is the heritability divided by the
prediction accuracy [25]. For VSP, phenotypic selection would be more than 3 times more
effective than genomic selection. The low efficiency of the genomic selection in spite of
the high heritability could be due to the great variability of the lines of the panel, which
probably reduces the relatedness of the genotypes of the training and testing populations,
and this decreases the prediction ability [39].

Eight significant SNPs were located in the coding or promoter regions of core senes-
cence genes identified in a previous RNAseq experiment [13,20]. We propose these genes
as candidates potentially involved in senescence and with polymorphisms that generate
variability for senescence that could be useful in maize breeding. The functions of the eight
genes are diverse. One of the candidate genes, Zm00001d026501, codifies the plastidic Glu-
tamine synthetase2 enzyme (GS2), which is involved in the assimilation of photorespiratory
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ammonium [40]. An increase in nitrogen assimilation occurs when it is overexpressed,
resulting in a high rate of photosynthesis [41].

On the other hand, a knockout mutation of GS2 in Arabidopsis thaliana shows a high
ammonium content with a chlorotic phenotype [42]. In Nicotiana tabacum during senescence,
GS2 is a pivotal enzyme that relocates the assimilation of ammonia from the chloroplast to
the cytosol of mesophyll cells (MC) [43]. An experiment conducted with late senescence and
an early senescence hybrid of maize found that GS2 was downregulated during senescence.
The gene expression was retained longer in the late senescence hybrid than in the early
senescing hybrid [44]. We also found that GS2 is downregulated at senescence, and that
in late senescence lines, the downregulation of this gene tends to be later than in the early
senescence lines (Figure 5a) [13,20].

Zm00001d014642 is orthologous to AT4G31540 of A. thaliana and is described as an
EXCYST subunit or EXO70G1. It belongs to a gene family involved in diverse land plant
functions: protein recycling, cytokinesis, biotic stress interactions, defense, secondary cell
wall pathways, and many more [45]. The EXO70 subgroup participates in the regulation
of leaf senescence by increasing its expression (Figure 5c), and it is also involved in other
processes, such as nitrogen mobilization and the regulation of leaf senescence in wheat and
soybean [46–48]. Additionally, the suppression or silencing of this gene leads to accelerated
senescence in soybean [47]. Mutations in A. thaliana have fewer anthocyanins, which are
essential components that safeguard the photosynthetic apparatus during senescence [49].

Of the eight significant SNPs located in the core senescence genes, only S6_162646831
was in the promoter region of Zm00001d038911. S6_162646831 was the only SNP significant
for senescence and agronomic traits (VSP and RDW). This gene codifies a non-specific
lipid transfer protein (nsLTP). The gene has an 85% similarity with its orthologue in
sorghum, indicating a high level of conservation among both species. LTPs are small,
essential proteins available in high amounts in higher plants and are responsible for the
inter-transportation of phospholipids, glycolipids, fatty acids, and many other amphiphilic
compounds between membranes in in vitro conditions [50–52]. Additionally, nsLTPs
participate in signaling in plant defense against environmental stress, such as salt and cold
stress [53–55]. However, the role of nsLTP in senescence is not known precisely.

The candidate gene Zm00001d017204 codifies an adenine phosphoribosyltransferase
(APRT) enzyme that removes adenine and adenosine, which are considered toxic within
chloroplasts [56]. In A. thaliana, APRT is a crucial metabolic enzyme in the inactivation of
cytokinins, essential hormones that regulate the senescence process [57]. Zm00001d014796
is a nuclear export protein (NEP) interacting protein with a RING finger domain with a
high degree of coincidence (85% identity) with similar genes in wheat and rice. In wheat,
several genes that belong to this family change their expression during senescence [25].
This gene is located in one of the hotspots for QTL senescence at chromosome 5 [33–36] and
could be one of the genes behind the QTLs consistently detected in the region, for example,
the QTL detected by [33], which is 2 Mb apart from the candidate gene. Moreover, the gene
regulation was consistent with the senescence of the lines in the RNAseq experiment. The
earliest senescence line started very soon after its upregulation, which is indicative of the
relevance of the gene, as it is probably involved in the initiation of senescence. The functions
of the remaining three candidate genes have not yet been fully described. Zm00001d039155
is not described in maize, although it is orthologous in A. thaliana and is involved in
histone deacetylation and condensation of heterochromatin. Zm00001d016802, which
encodes ascorbate peroxidase (APX). APX is an enzymatic antioxidant that prevents the
uncontrolled oxidation of cellular compounds by scavenging H2O2, one of the ROS in plants
produced during photosynthesis and photorespiration [58,59]. However, Zm00001d016802
was downregulated in the previous RNAseq experiment (Figure 5e) [13,20], but we would
expect that genes involved in antioxidant synthesis increase its expression at senescence,
not the opposite. Finally, we found a significant SNP in Zm00001d005814, described as
“Photosystem I chlorophyll a/b-binding protein 6, chloroplastic,” and it is one of the
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genes involved in light-harvest complex I (LHCI). This gene was downregulated during
senescence, as expected from a gene involved in photosynthesis.

4. Material and Methods
4.1. Plant Material and Experimental Design

We evaluated 400 inbred lines of temperate, tropical/subtropical, and mixed origin, in-
cluding representatives of the important groups used in breeding within temperate germplasm,
such as Stiff Stalk, Lancaster, Iodent, and European Flint (Supplementary Table S1). The
germplasm pedigree relationship and genetic diversity have been described in [60]. The
inbred lines were provided by the North Central Regional Plant Introduction Station of the
USA (NCRPIS). The inbred lines were evaluated at Misión Biológica de Galicia research
station in Pontevedra, Spain, for senescence traits over three years (2017, 2018, and 2019)
and biomass traits over two years (2018 and 2019). The soil was a sandy loam, and agro-
nomic practices were the standard in the region. The inbred panel was evaluated using
an augmented design with 17 blocks and six checks (A619, A632, A662, A665, PH207, and
EP42) adapted to the experimental field conditions. Each experimental plot area was 1.9 m2,
with a density of approximately 7 plants/m2. Each experimental plot consisted of 14 plants.

The genotypic data of the inbred lines used for association analysis were provided by
Cornell University and consisted of 1,000,000 SNPs and are available on a public database,
Panzea (http://www.panzea.org (accessed on 15 November 2018)) [60,61]. Heterozygous
genotypes and insertion/deletion polymorphisms (INDELs) in this dataset were regarded
as missing data. In total, 156,164 SNPs distributed over the entire maize genome were
kept after excluding SNPs with more than 20% missing genotypic data and minor allele
frequency (MAF) less than 0.05 in TASSEL 5.2.54 [62]. The physical position of the makers
was provided according to version 4 of the Maize B73 RefGen_v4 (www.maizegdb.org
(accessed on 20 of December 2018)) [63,64].

4.2. Population Structure Analysis

The genetic structure of the population was estimated using the Bayesian clustering
algorithm implemented in the STRUCTURE software v2.3.4 [65] using an admixture model
with burn-in and Monte Carlo Markov chain for 10,000 and 100,000 cycles, respectively. An
uninterrupted series of K was tested from 1 to 10 in seven independent runs. The Evanno
method [66] was used to calculate the most likely number of subpopulations with the
STRUCTURE HARVESTER software [67].

4.3. Phenotypic Data

The net CO2 assimilation rate (mol CO2 m−2 s−1), which indicates photosynthesis
activity (PA), was measured with an infrared gas analyzer (IRGA) portable photosynthesis
system (LI-COR 6400XT, Lincoln, NE, USA) [68]. Measurements were taken in the middle
part of the ear leaf of two plants randomly selected within each plot at 45 days after
anthesis (DAA) [20]. We chose this specific moment based on previous experiments in
which we measured senescence at regular intervals from anthesis to 90 DAA [20]. In
those experiments, we found that the values of PA at flowering were similar among
the genotypes and remained so until 45–60 DAA, when there were large differences in
PA among genotypes due to differences in the timing or rate of senescence. Later, PA
was negligible in most genotypes because senescence was completed in all of them. We
concluded that 45 DAA is the optimum moment for detecting differences among genotypes
in the timing and/or rate of senescence. Simultaneously with PA, stomatal conductance
(SC) (mol H2O m−2s−1) was recorded with the portable photosynthesis system. After
45 DAA, the visual senescence of the plant (VSP) and the visual senescence of husks (VSH)
were estimated on a visual scale from 1 to 5, where one corresponds to dried leaves and five
to whole green leaves or husks. The visual scales were evaluated based on all the plants
in the plots. We calculated the difference between VSP and VSH (PHVDIF) to assess the
degree of association between the senescence of husks and the remaining parts of the plant.

http://www.panzea.org
www.maizegdb.org
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A digital moisture meter calculated the grain moisture (GM) (g/Kg). The ears were
removed from the vegetative fraction, and the grain dry weight (GDW) (g/plant) was
estimated by fresh weight after adjustment by GM. Residual dry weight (RDW) (g/plant),
including leaves and stalks, was measured after placing the fresh samples in a stove for
five days at 60 ◦C. The residual moisture (RM) (g/Kg) was calculated by subtracting the
proportion of dry weight from the freshly harvested plant weight.

4.4. Statistical Analysis

Analyses of variance and box and normal distribution plots were calculated for each
individual year and for the combination of the three years using PROC MIXED and PROC
UNIVARIATE procedures of SAS [69,70]. The phenotypic and genotypic correlation analy-
sis was performed with three-year phenotypic values using Meta-R software developed by
CIMMYT [71,72]. Heritability was estimated from variance components as:

h2 =
σ2

g

σ2
g +

σ2
gy
y +

σ2
g

ry

where σ2
g is the variance of genotypes, σ2

gy is the interaction of genotype and year variance,
y is the number of years, σy is the residual variance, and r is the number of replicates per
year (r = 1).

4.5. GWAS Analysis

BLUEs (best linear unbiased estimates) of genotypes were calculated using PROC
MIXED. Years, the interaction of the years with genotypes, and blocks within years were
considered random effects. We performed the GWAS in TASSEL V5.2.25 [62], following a
mixed linear model [73]:

y = Xβ + Zu + e

where y is the vector of BLUEs, β is a vector of SNP marker fixed-effects parameters, u is a
vector of random additive effects of inbred lines, X and Z represent matrix, and e is a vector
of random residuals. The random inbred line effect was estimated as Var(u) = K σ2

a, where
K is the n × n matrix of the pairwise kinship coefficient and σ2

a is the estimated additive
genetic variance [73]. Restricted maximum likelihood estimates of variance components
were obtained using the optimum compression level (compressed mixed linear model)
and population parameters previously determined (P3D) in TASSEL. We used 10−5 as the
threshold because the point where the observed and expected F-test statistics deviated in
the Q-Q plot was equal to or lower than this value for all traits [20,74,75]. The significant
associations were used to select candidate genes validated by an independent RNAseq
experiment, as explained in the next section. Combining GWAS with RNA-seq decreases
the false-positive rate and improves the accuracy of gene selection [76]. Circular Manhattan
plots were generated by the CMplot package in R Software (https://github.com/YinLiLin/
CMplot (accessed on 6 December 2021)). A QQ-plot was generated in TASSEL V5.2.25 [62].

4.6. Identification of Candidate Genes

We chose the genes within a window of ±200 kb of SNPs significantly associated with
a senescence trait. Within those, we exclusively [20] considered as candidates the genes be-
longing to a list of core senescence genes identified in a previous study of RNAseq [13,20].
In the RNAseq experiment, the seven inbred lines were selected with identical flower-
ing times but different durations of the period from flowering to complete senescence.
NC292 and PHBB3 had early senescence, PHW79 and PHHB9 had late senescence, and
PHT10, PHW52, and PA8627 had intermediate senescence. The leaf samples from each
genotype were collected every 15 days from flowering to senescence to analyze RNAseq
expression levels. Differential expression analysis was performed to compare the expres-
sion at flowering with the expression after flowering. In total, 1671 genes were consid-
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ered core senescence genes because their change in expression at senescence, either up
(1083 genes) or down (588 genes), was consistent across moments and lines. This list was
used in the present work to select candidate genes, as previously noted. The RNAseq
dataset is available publicly in the National Center for Biotechnology Information (NCBI)
BioProject, https://www.ncbi.nlm.nih.gov/bioproject/ (accessed on 16 May 2022), PR-
JNA746402 [20]. The annotation and function of the candidate genes were done using
the maize genome database (GDB) (https://www.maizegdb.org (accessed on 20 Decem-
ber 2018)) [63,64], uniport (https://www.uniprot.org (accessed on 2 September 2019))
annotation hub database [77], and a literature search of the gene and gene family.

4.7. Genomic Selection

Ridge regression best linear unbiased prediction (RR-BLUP) [78,79] was used to es-
timate marker effects and to develop prediction equations for genomic selection. We
performed a cross-validation method to calculate the accuracies of the model using 80% of
the population as training and 20% of the population as testing, with 500 iterations. The
analyses were done in R software using the rrBLUP Package [80].

5. Conclusions

In this study, we presented the results of the evaluation of the largest association
panel examined thus far in order to study the genetics of senescence, which was measured
directly as photosynthesis decay for the first time in a mapping experiment in maize. The
high genetic correlations (equal or higher than 0.8) and the high coincidence of the allelic
effects (in 93% of the significant SNPs) among senescence and agronomic traits clearly
showed the importance of senescence in adapting the crop cycle to the duration of the
cultivation season. Eight of the significant SNPs detected in the association analysis were
found in the coding or promoter regions of genes significantly associated with senescence
in an independent RNAseq experiment. These genes are strong candidates for subsequent
functional analyses to widen our knowledge of the genetics of plant senescence and for use
in breeding to optimize the timing of senescence in different environments.
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