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A B S T R A C T   

In general, the relationship between the predicted functional consequences of missense mutations mapping to 
genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, 
we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on 
the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis 
demonstrated that nine out of 72 nominally associated SNPs were classified as “highly” or “very highly 
consistent” in silico-predicted functional mutations and did not show association with lipid traits expected to be 
affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample 
size of certain genotypic classes might have limited to some extent the reach of the current study, our data 
indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations 
on complex phenotypes.   

1. Introduction 

Missense variants are a source of phenotypic variation by altering 
protein structure and activity. Because of this, many in silico methods 
have been implemented to predict the functional consequences of spe-
cific amino acid substitutions [1]. Computational methods devised to 
predict such consequences mostly rely on approaches based on sequence 
conservation, structural analysis, sequence and structure information, 
and meta-prediction i.e. predictors integrating data from multiple 
sources [1]. 

The relationship between the predicted effects of missense poly-
morphisms and their observable clinical and functional consequences 
has been explored in several studies mostly focused on monogenic 

human diseases. For instance, Tchernitchko et al. [2] reported that in 
silico predictions, with PolyPhen and SIFT, of the functional conse-
quences of non-synonymous variants in the hemoglobin and glucose-6- 
phosphate dehydrogenase genes correlated weakly with the pheno-
typic manifestation of anemia and hemolytic disorders, respectively. In 
another study, Dorfman et al. [3] predicted the deleteriousness of 
missense polymorphisms located in the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene with three in silico tools (PANTHER, 
SIFT and PolyPhen). Unfortunately, none of the three tools was able to 
accurately differentiate mutations producing cystic fibrosis from muta-
tions found in individuals with related disorders or no disease [3], 
evidencing that clinically relevant prediction by coding variant classi-
fiers was unreliable [4]. In mouse, only 4 out of 30 missense mutations 
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identified in immune genes and anticipated to be deleterious had a 
phenotypic impact on target lymphocyte populations, thus revealing a 
strong discrepancy between the predicted and observed effects of these 
missense mutations [5]. More recently, the use of endophenotypes (e.g. 
enzyme catalytic activity or protein stability) resulted in an overall 
improvement of the predictive power of bioinformatic coding variant 
classifiers [4,6]. 

In farm animals, the relationship between the predicted functional 
consequences of missense mutations and their observable impact on the 
phenotypic variation of complex traits has not been systematically 
investigated. In the current work, we have predicted the functional 
consequences of 97 porcine missense single nucleotide polymorphisms 
(SNPs) mapping to 68 genes involved in lipid metabolism by using four 
in silico tools. Next, we have investigated in a population of 316 Duroc 
pigs the association of these missense mutations with 48 lipid traits, 
paying special attention to mutations that are robustly predicted to have 
functional consequences by at least three tools. Our expectation was that 
the phenotypic consequences of mutations consistently predicted to 
cause alterations in gene function should resemble those observed in 
relevant genetic models. 

2. Materials and methods 

2.1. Generation of a Duroc resource population and phenotype recording 

In 2003, we generated a population of 350 Duroc pigs (Lipgen 
population) by mating five boars with 400 sows and keeping only one 
piglet from each litter [7]. After a number of setbacks encountered 
during the generation of the experimental population (litters without 
weaned males, mortality and illness in fattening period, etc.), the 
analyzed population consisted of 350 males born on 3 farms, belonging 
to 5 half-sib families and distributed in 4 fattening batches [7]. Piglets 
were castrated after weaning and moved to the IRTA pig experimental 
farm in Monells (Girona, Spain) and kept under intensive conditions [7]. 
During the first period of fattening (up to 90 kg of live weight, around 
150 days of age) barrows were fed a standard diet (2450 kcal/kg) with 
18% protein, 3.8% fiber, 7.0% fat, 1.0% lysine, and 0.3% methionine ad 
libitum [7]. In the last period of fattening (30–40 days before slaughter), 
pigs were fed ad libitum a standard diet (2375 kcal/kg) with 15.9% 
protein, 4.5% fiber, 5.2% fat, 0.7% lysine, and 0.2% methionine [7]. 
When pigs reached a live weight of ~122 kg (approximately190 days of 
age), they were slaughtered in a commercial slaughterhouse following 
current Spanish legislation (https://www.boe.es/buscar/doc.php? 
id=BOE-A-1995-3942). Tissue samples from the gluteus medius (GM) 
and longissimus dorsi (LD) skeletal muscles were obtained after pigs were 
slaughtered [8]. All experimental procedures were approved by the 
Ethical Committee of IRTA. 

In the Lipgen population, we recorded 48 lipid traits including: eight 
serum lipid concentrations measured in 45 and 190 days-old pigs by 
following the protocols reported by Gallardo et al. [7] and Manunza 
et al. [9], eight carcass traits described by Eusebi et al. [10], and 32 
intramuscular fat content and composition traits measured in the gluteus 
medius and longissimus dorsis muscles as described by Gonzalez-Prendes 
et al. [11]. A list of the 48 traits used in the current experiment is shown 
in Tables S1 and S2. 

2.2. Genome sequencing of five Duroc boars 

We have sequenced the genomes of the five Duroc boars that founded 
the Lipgen population. Our goal was to characterize the missense vari-
ation segregating in the lipid metabolism genes of pigs from the Lipgen 
population. Total genomic DNA was purified from blood samples [12] 
and sequenced at the Centre Nacional d’Anàlisi Genòmica (CNAG, 
Barcelona, Spain). The synthesis of paired-end multiplex libraries was 
carried out with the KAPA PE Library Preparation kit (Kapa Biosystems, 
Wilmington, MA) in accordance with the instructions of the 

manufacturer. Libraries were loaded to Illumina flow-cells from a 
HiSeq2000 instrument for cluster generation to yield 150-bp paired-end 
reads following the Illumina protocol. Base calling and quality control 
analyses were carried out with the Illumina RTA sequence analysis 
pipeline following the guidelines of the manufacturer. Quality-checked 
filtered reads were mapped to the Sus scrofa genome version 11.1 [13] 
using the Burrows-Wheeler Aligner (BWA) [14]. 

2.3. Retrieval of missense SNPs mapping to genes involved in lipid 
metabolism and in silico prediction of their effects 

Aligned reads in BAM files were sorted and indexed using SAMtools 
v0.1.19 [15] and variant calling was performed in a multi-sample calling 
with the Genome Analysis Toolkit or GTKA [16]. Single nucleotide 
polymorphisms were annotated with the SnpEff tool [17] (http://pci 
ngola.github.io/SnpEff/). For downstream analyses, we only retained 
missense SNPs mapping to lipid metabolism genes that displayed a 
heterozygous genotype in at least one of the five boars and with a quality 
score ≥ 30. Genes involved in lipid metabolism were identified through 
a systematic search in the LIPID MAPS Proteome Database [18] in 2020 
and these are listed in Table S3. Protein sequences from selected genes 
related to lipid metabolism were extracted from the Ensembl database 
(Sscrofa 11.1), version 101 [19]. 

The predicted functional effect of each missense SNPs on the corre-
sponding protein was assessed with 4 different bioinformatic tools: 
Sorting Intolerant From Tolerant (SIFT) [20], MutPred2 [21], Protein 
Variation Effect Analyzer (PROVEAN) [22], and Align GVGD [23,24]. In 
the case of the SIFT software, we just retrieved the automated pre-
dictions made by this tool as displayed in the Ensembl release 106 
(Sscrofa 11.1), while in the case of the remaining tools all predictions 
were made manually. The SIFT software infers the probability that a 
mutation has functional effects by aligning the affected protein with 
other related proteins and assessing the evolutionary conservation of the 
position where the missense substitution occurred as well as the type of 
amino acid substitution [20,25]. According to the SIFT manual, amino 
acid substitutions with normalized probabilities <0.05 are predicted to 
be deleterious. Similarly, the PROVEAN algorithm uses an alignment- 
based score measuring the change in sequence similarity of a query 
sequence to a set of related protein sequences, before and after the 
introduction of an amino acid variation to the query sequence, in order 
to predict the damaging effect of such amino acid substitution [26]. 
When a score is equal to or below − 2.5, the protein variant is predicted 
to have a deleterious effect. The Align GVGD tool [23] employs two 
parameters, the Grantham variation (GV) and Grantham deviation (GD), 
which are based on the concept of the Grantham difference [27], to 
classify missense mutations. Deleterious mutations are discerned from 
their neutral counterparts by taking into account both biophysical and 
evolutionary conservation criteria. Align GVGD prediction classes form 
a spectrum (C0, C15, C25, C35, C45, C55, C65) with C65 most likely to 
interfere with function and C0 least likely (here, we have considered 
that a mutation is deleterious when it belongs to class C65). Finally, the 
MutPred2 software relies on a machine learning-based method trained 
on a set of 53,180 pathogenic and 206,946 putatively neutral variants 
which takes into account specific aspects of protein structure and 
function to infer variant impact on a probabilistic framework [21]. 
Scores calculated with MutPred2 range between 0 and 1, and a score 
threshold equal or above 0.50 suggests deleteriousness. 

In our study, missense SNPs predicted to have functional conse-
quences by the four tools were considered as “very highly consistent” 
(vhc) functional mutations, while those predicted to be functional by 
three tools were defined as “highly consistent” (hc) functional muta-
tions. We considered that mutations that are predicted to be functional 
by just two or less tools do not yield conclusive in silico evidence of 
having functional consequences. The degree of prediction consistency 
between each pair of tools was assessed by calculating the total number 
of concordant predictions divided by the sum of the concordant and 
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discordant predictions. 

2.4. Genotyping of 97 missense SNPs mapping to genes related to lipid 
metabolism 

We decided to perform the genotyping and association analysis of 97 
missense mutations mapping to porcine genes involved in lipid meta-
bolism. The suitability of missense mutations to be genotyped with a 
TaqMan Open Array multiplex assay was assessed by submitting SNPs, 
as well as their flanking sequences (60 nucleotides upstream and 
downstream), to the Custom TaqMan Assay Design Tool website (https 
://www.thermofisher.com/order/custom-genomic-products/tools 
/cadt/). From the 350 Duroc pigs that formed part of the Lipgen pop-
ulation in 2003, only 316 had available DNA samples to be genotyped 
with TaqMan assays. The genotyping of 97 missense SNPs in 316 Duroc 
pigs was carried out at the Servei Veterinari de Genètica Molecular of the 
Universitat Autònoma de Barcelona (http://sct.uab.cat/svgm/en) with 
the aid of a 12 K Flex QuantStudio equipment and by following the in-
structions of the manufacturer. Genotypes were visualized with the 
TAQMAN GENOTYPER software v.1.3 (Applied Biosystems, Foster City, 
CA). 

2.5. SNP association analyses with lipid traits 

Association analyses between missense SNPs and lipid phenotypes 
were carried out with the Genome-wide Efficient Mixed-Model Associ-
ation (GEMMA) software [28]. The statistical model implemented in 
GEMMA to estimate the effects of missense SNPs on lipid phenotypes 
was as follows: 

y = Wα+ x δ+ u+ ε 

where y is the vector of lipid phenotypes for all individuals; W is a 
matrix of fixed effects (batch of fattening, with 4 categories), a column of 
1 s, and a covariate that depends on the trait: (1) IMF content in GM, for 
fatty acid (FA) related traits measured in the GM muscle, (2) IMF content 
in LD, for FA related traits measured in the LD muscle, (3) backfat 
thickness, for IMF content measured in GM and LD, (4) live weight at 
slaughter, for CHOL, HDL, LDL, BFT34R, BFTLR, LE%, CW, HW, 
BFT34RPS, FHT and LD34R, and age at slaughter for TRIG; α is a vector 
of the corresponding coefficients that include the intercept, the batch 
effects and the regression coefficient on the covariate; x is a vector of 
marker genotypes in each individual; δ is the effect size of the marker 
(allele substitution effect); u is a vector of random individual genetic 
effects with a n-dimensional multivariate normal distribution u ~ N (0, 
λ τ− 1 K), being τ− 1 the variance of the residual error, λ is the ratio be-
tween the two variance components and K a known relatedness matrix 
derived from SNP genotypes; and ε is the vector of errors. Multiple 
testing was corrected with the false discovery rate approach reported by 
Benjamini and Hochberg [29]. 

3. Results 

3.1. Detection of missense polymorphisms mapping to porcine genes 
related to lipid metabolism and in silico prediction of their functional 
effects 

Whole-genome sequencing of the five boars resulted in a 37.67 to 
46.6 × coverage, with >98% of the genome covered by at least 10 reads 
in all five samples. Moreover, about 78% of the reads were uniquely 
mapped. By using the SnpEff tool [17], 10,002,757 SNPs and 2,867,142 
indels were annotated. From 66,572 SNPs mapping to 768 genes 
involved in lipid metabolism, 279 were classified as missense poly-
morphisms. Based on biological and technical criteria, we selected a 
subset of 97 missense SNPs (Table S4) located in 68 lipid metabolism 
genes to be genotyped in 316 Duroc pigs. 

Visual inspection of the in silico predictions of the functional con-
sequences of the 97 missense SNPs revealed the existence of five vhc 
functional mutations mapping to the CAV2 (p.S108C), DHCR24 (p. 
P302S), LIPC (p.P212L), LRP4 (p.P1080L), and PARK2 (p.R161G) genes 
(Table 1). Moreover, we identified seven hc functional mutations located 
in the ACSM3 (p.I190T), FABP3 (p.G25S and T104M), JMJD1C (p. 
S2018F), MC4R (p.D298N), MLXIPL (p.G683R) and ZNF648 (p.S343W) 
genes (Table 1). Thirty-one and 11 missense SNPs were predicted to be 
functional by one or two in silico tools respectively, while 43 SNPs were 
predicted to be neutral by all four tools. With the PROVEAN, MutPred2 
and SIFT software we predicted 15, 17 and 16 missense mutations to 
have functional effects respectively, while Align GVGD predicted 48 
mutations to have such effects. Indeed, this software shows the lowest 
concordance with the remaining ones (Table 2, Fig. 1). Noteworthy, 
PROVEAN and SIFT display the highest level of consistency in their 
predictions (Table 2, Fig. 1). 

3.2. Performance of a gene-centric association analysis between missense 
SNPs in genes related to lipid metabolism and phenotypic variation of lipid 
traits recorded in Duroc pigs 

We genotyped, in the Lipgen population, the full set of 97 missense 
mutations and not only those that are strong candidates to have func-
tional effects (Table S4). We did this to infer whether associations with 
lipid traits are more numerous or more significant in the group of mu-
tations consistently predicted to be functional vs the group represented 
by those that do not yield conclusive in silico evidence of having func-
tional effects. 

The gene-centric association analysis between 97 missense SNPs and 
48 lipid traits revealed that 65 missense SNPs displayed nominally sig-
nificant associations (raw P-value <0.05) with intramuscular fat 
composition phenotypes (Table S5). With regard to the eight carcass 
traits and the six serum lipid traits, 23 and 12 SNPs, showed significant 
associations at the nominal level, respectively (Table S6 and Table S7). 
When using a q-value <0.05 as a threshold of significance, only the 
association between polymorphism p.G25S in the FABP3 gene and GM 
C17:0 content remained significant (Table 3). When a more lenient 
threshold of statistical significance (q-value <0.10) was employed, 10 
associations remained significant after correction for multiple testing 
(Table 3). From the set of missense polymorphisms associated with lipid 
traits (q-value <0.10), one mutation was predicted to be neutral by the 4 
tools (p.I32L in GALNT2), four were predicted to be functional by just 
one tool (p.T485M in AACS, p.G77D in PARK2, p.S392C in STAT5A and 
p.G90R in ZNF648), and two were hc functional mutations i.e. p.G25S 
and T104M in the FABP3 gene. The number of associations found be-
tween missense SNPs and lipid traits and their statistical significance did 
not show any evident difference between groups of mutations that differ 
in their predicted severity (Figs. 2 and 3). 

Regarding the vhc functional mutations, only three showed associa-
tions with FA composition traits that were significant at the nominal 
level i.e. S108C in the CAV2 gene, p.P302S in the DHCR24 gene and p. 
P1080L in the LRP4 gene (Table 4). No significant associations between 
the genotypes of vhc functional mutations and serum lipid concentra-
tions or carcass traits were detected. When considering the set of hc 
functional mutations, the two missense polymorphisms in the FABP3 
gene (p.G25S and p.T104M) were the ones which showed the largest 
number of nominally significant associations with a broad array of 
intramuscular fat composition and carcass traits (Table 5, Fig. S1). A few 
additional nominally significant associations were also detected in the 
gene-centric association analysis i.e. p.I190T (ACSM3 gene) and LD 
C22:6 content, p.S2018F (JMJD1C gene) and GM C18:3 content and p. 
LD34R; p.S343W (ZNF648 gene) and LD C20:1 and GM C20:3 contents, 
and p.G683R (MLXIPL gene) and GM C17:0 and GM CHOL contents 
(Table 5). 

For several genes containing either vhc or hc mutations, the pheno-
types of knockout mice have been reported in the literature (see 
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Discussion for more details). Individuals with homozygous genotypes 
for mutations inactivating the DHCR24, PARK2, JMJD1C, MLXIPL and 
LIPC genes are expected to show alterations in serum lipid 

concentrations, and those homozygous for mutations suppressing LIPC 
or MC4R function are predicted to display changes in phenotypes related 
with obesity. In Figs. S2 to S7, we display the genotypic means for serum 
lipid and/or obesity traits recorded in pigs harbouring vhc or hc muta-
tions in any of these six genes. These traits were selected according to the 
expected phenotypic consequences of gene abrogation in knockout 
mice. Contrast of genotypic means based on GEMMA, which implements 
a correction for multiple testing, did not show any significant result. 
These findings are consistent with the notion that vhc or hc mutations do 
not produce the alterations predicted by experiments characterizing the 
phenotypes of knockout mice (see Discusion for more details about such 
predictions). 

4. Discussion 

4.1. Limited concordance in the prediction of the consequences of amino 
acid substitutions in porcine genes related to lipid metabolism 

In this study, we predicted the potential consequences of 97 missense 
mutations on protein function by using four in silico tools (SIFT PRO-
VEAN, MutPred2 and Align GVGD) and subsequently assessing the 
concordance of these predictions. The two in silico prediction tools 
which displayed the highest level of concordance were SIFT and PRO-
VEAN. The SIFT software employs Dirichlet mixtures retrieved from 
protein multiple sequence alignments to generate position specific 
scoring matrices and score missense substitutions [20,25]. SIFT yields a 
normalized probability for each amino acid replacement to occur by 
considering the evolutionary conservation of protein families at the 
sequence level [25]. PROVEAN is also a sequence and evolutionary 
conservation-based method that uses a protein sequence and amino acid 
variations as inputs [22,26]. In our view, the most probable reason for 
the high consistency between SIFT and PROVEAN predictions is that 
both tools use similar methodological principles (i.e. sequence and 
evolutionary conservation) to make inferences about the pathogenicity 
of missense mutations. 

In our study, predictions made with Align GVGD showed the lowest 
concordance with those generated by the other three methods. The Align 
GVGD tool uses a multiple sequence alignment as a starting point and 
calculates a Grantham Variation score (GV), which estimates biochem-
ical variation at each alignment position, and a Grantham Difference 
score (GD) assessing the difference in side chain atomic composition, 
polarity, and volume between two amino acids [30]. So Align GVGD 

Table 1 
Missense mutations in porcine genes related to lipid metabolism classified as functional by three (highly consistent functional mutations) or four (very highly 
consistent functional mutations - shown in bold) in silico prediction tools.  

Gene SNP ID1 SSC2 Position (Mb) Substitution SIFT3 MutPred24 Provean5 Align GVGD6 

ACSM3 rs328465555 3 25,262,463 p.I190T 0 Neutral − 3.388 89.28 (Class C65) 
CAV2 rs332492536 18 29,706,153 p.S108C 0 0.734 ¡4.361 111.67 (Class C65) 
DHCR24 rs328825271 6 157,502,221 p.P302S 0 0.757 ¡6.212 73.35 (Class C65) 
FABP3 rs326530011 17 16,028,772 p.G25S 0.01 0.906 − 5.203 Neutral (Class C55) 

rs341327293 17 16,029,010 p.T104M 0.01 Neutral − 3.919 81.04 (Class C65) 
JMJD1C rs335786128 14 66,665,158 p.S2018F 0 Neutral − 2.894 154.81 (Class C65) 
LIPC rs712720116 1 113,456,385 p.P212L 0.01 0.579 ¡9.320 97.78 (Class C65) 
LRP4 rs328789611 2 15,651,335 p.P1080L 0.01 0.517 ¡4.246 97.78 (Class C65) 
MC4R rs81219178 1 160,773,437 p.D298N 0.01 0.829 − 4.330 Neutral (Class C15) 
MLXIPL rs788027215 3 10,900,920 p.G683R 0 Neutral − 2.951 125.13 (Class C65) 
PARK2 rs341517389 1 5,922,601 p.R161G 0.01 0.580 ¡4.474 125.13 (Class C65) 
ZNF648 rs341953239 9 123,508,330 p.S343W 0 Neutral − 3.846 176.58 (Class C65)  

1 SNPs were annotated as missense variants in the Ensembl database (Sscrofa 11.1) version 106 and Biomart portal (http://www.ensembl.org/biomart/). 
2 SSC: porcine chromosome. 
3 Positions with normalized probabilities <0.05 are predicted to be deleterious. 
4 The MutPred2 score ranges between 0 and 1, with a score threshold of 0.50 suggesting pathogenicity. However, a threshold of 0.68 yields a false positive rate of 

10% and that of 0.80 yields a false positive rate of 5%. 
5 When the PROVEAN score is equal to or below − 2.5, the protein variant is predicted to have a deleterious effect. 
6 The prediction classes form a spectrum (C0, C15, C25, C35, C45, C55, C65) with C65 most likely to interfere with function and C0 least likely. Here, we have 

considered that a mutation is deleterious when it belongs to class C65. 

Table 2 
Concordance1 of in silico predictions about the functional consequences of 
missense mutations in porcine genes related to lipid metabolism.  

Tool SIFT Provean MutPred2 Align GVGD 

SIFT – 0.87 0.77 0.28 
Provean  – 0.84 0.30 
MutPred2   – 0.32 
Align GVGD    –  

1 Ratio between the number of concordant predictions divided by the sum of 
concordant plus discordant predictions. Low-confidence variants from Aling 
GVGD were treated as neutral. 

Fig. 1. Venn diagram showing the concordance of the in silico predictions 
made with SIFT, PROVEAN, MutPred2 and Align GVGD about the functional 
consequences of 97 missense SNPs mapping to 68 porcine genes related to lipid 
metabolism. Predictions from two tools are concordant when they concur in the 
classification of a given mutation as functional or non-functional. For this 
figure, non-deleterious SNPs were considered neutral. 
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Table 3 
Gene-centric association analysis1 between missense polymorphisms in porcine genes related to lipid metabolism and lipid traits recorded in a population of 316 Duroc 
pigs (only associations with a q-value <0.10 are displayed).  

Fatty acid composition traits 

Gene 
Symbol 

Traits SNP ID SSC Position (Mb) Substitution P- 
value 

q- 
value 

B δ (SE) A1 MAF In silico prediction 

AACS GM 
C17:0 

rs343900702 14 28,129,365 p.T485M 0.001 0.065 0.133 0.052 (0.015) G 0.295 AlignGVGD 

FABP3 GM 
C17:0 

rs326530011 17 16,028,772 p.G25S 0.000 0.040 0.040 0.093 (0.025) C 0.083 SIFT, MutPred2, 
Provean 

GALNT2 GM 
C14:0 

rs341291169 14 60,046,668 p.I32L 0.001 0.078 0.078 − 0.096 
(0.028) 

A 0.164 – 

PARK2 LD C18:3 rs331967252 1 5,858,928 p.G77D 0.001 0.055 0.055 0.030 (0.008) G 0.304 Align GVGD 
ZNF648 GM 

C20:5 
rs324288383 9 123,509,090 p.G90R 0.002 0.094 0.188 − 0.043 

(0.012) 
A 0.434 Align GVGD   

Serum lipids concentrations 

Gene Symbol Traits SNP ID SSC Pos Substitution P-value q-value Bonf δ (SE) A1 MAF In silico prediction 

STAT5A HDL45 rs321203224 12 20,480,895 p.S392C 0.001 0.080 0.080 0.035 (0.010) G 0.379 Align GVGD   

Carcass traits 

Gene 
Symbol 

Traits SNP ID SSC Pos Substitution P- 
value 

q- 
value 

Bonf δ (SE) A1 MAF In silico prediction 

FABP3 BFT34R rs341327293 17 16,029,010 p.T104M 0.002 0.057 0.172 2.579 (0.736) G 0.224 SIFT, Provean, Align 
GVGD 

PARK2 BFT34R rs331967252 1 5,858,928 p.G77D 0.001 0.057 0.147 − 2.110 
(0.560) 

A 0.305 Align GVGD 

PARK2 BFTLR rs331967252 1 5,858,928 p.G77D 0.002 0.094 0.188 − 4.094 
(1.139) 

A 0.305 Align GVGD 

STAT5A BFTLR rs321203224 12 20,480,895 p.S392C 0.001 0.078 0.078 4.289 (1.126) G 0.378 Align GVGD  

1 SSC: porcine chromosome, GM: gluteus medius muscle, LD: longissimus dorsi muscle, C14:0: Myristic, C17:0: Margaric, C18:3: α-Linolenic, C20:5: Eicosapentaenoic, 
HDL45: High density lipoproteins at 45 days (mg/dL), BFT34R: backfat thickness between the third and fourth ribs, BFTLR: backfat thickness measured in the last rib, 
P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, B: Bonferroni corrected P-values, δ: allelic effect and its standard error (SE), 
A1: minority allele, MAF: frequency of the minority allele, In silico prediction: tools that predict that a given missense mutation has functional effects. All genotyped 
SNPs were annotated as missense variants in the Ensembl database (Sscrofa 11.1) version 106 and Biomart portal (http://www.ensembl.org/biomart/). 

P

Fig. 2. Boxplot indicating the average P-values of nominally significant associations for missense SNP classified a having functional effects by 0, 1, 2, 3 or 4 in silico 
tools. Three groups of lipid phenotypes are jointly considered: serum lipid concentrations, carcass traits and intramuscular fat content and composition traits 
recorded in 316 Duroc pigs. 
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differs from SIFT and PROVEAN in the sense that it does not rely 
exclusively on evolutionary conservation but also on the biophysical 
properties of amino acids to predict the consequences of missense mu-
tations on gene function. This important methodological difference 
might explain the discrepancies observed in our study when comparing 
the predictions of AlignGVGD vs PROVEAN and SIFT. The second less 
concordant tool was MutPred2, something that could be anticipated 
because its methodological basis is completely different than that of the 
three other methods. Indeed, the MutPred2 software is based on a 
machine-learning approach taking into account sequence-based pre-
dictors (for over 50 structural and functional protein properties) which 
are trained on a large common dataset obtained from different sources 
and databases [21]. By integrating both genetic and molecular data, 
MutPred2 infers the damaging potential of amino acid substitutions by 
yielding a pathogenicity score [21]. 

Limited concordance of predictions made with different in silico 
tools has been reported in previous studies [31,32]. Grimm et al. (2015) 
compared the performance of ten in silico tools predicting the conse-
quences of amino acid substitutions on five data sets, and reported that 
programs trained for the purpose of predicting pathogenicity generally 
performed better than those based on the calculation of conservation 
scores. Moreover, Grimm et al. [33] highlighted a problem of circularity 
in such predictions which makes it difficult to compare different 
analytical approaches. Importantly, the accuracy of predictions made 
with tools based on protein multiple sequence alignments are strongly 
dependent on the quality and informativeness of such alignments in 
terms of size, evolutionary depth, and careful construction and curation 
of the alignment [30]. Moreover, discrepancies in the predictions of in 
silico tools could be due, at least in part, to the fact that they build and 
use different multiple sequence alignments, although predictions can be 
different even when the same multiple sequence alignment is used by 

different tools [34]. Notably, tools do not always perform best when 
using their own alignment [34]. 

Another factor influencing the accuracy of in silico predictions is the 
gene being studied. For instance, Leong et al. [31] assessed the perfor-
mance of five in silico tools to predict the consequences of non- 
synonymous mutations in the KCNQ1, KCNH2 and SCN5A genes and 
found that predictions for the SCN5A locus were much more inaccurate 
than those for the KCNQ1 or KCNH2 loci. In summary, multiple tech-
nical and methodological issues might explain the limited concordance 
of predictions made with SIFT, PROVEAN, MutPred2 and Align GVGD 
about the functional consequences of missense substitutions mapping to 
porcine lipid metabolism genes. 

4.2. The associations of very highly consistent functional mutations with 
lipid traits do not recapitulate phenotypes observed in knockout mice 

We have detected 5 missense mutations in five porcine genes related 
to lipid metabolism that were consistently classified by the four in silico 
tools as deleterious and that, in consequence, are strongly predicted to 
alter gene function. These mutations were p.S108C (CAV2), p.P302S 
(DHCR24), p.P212L (LIPC), p.P1080L (LRP4) and p.R161G (PARK2). In 
principle, we would expect that if these mutations are truly functional, 
their associations with lipid traits in pigs should reflect, at least to some 
extent, alterations in lipid-related phenotypes observed in knockout 
mice or related genetic models. Our results show that, in general, this is 
not the case. For instance, the p.P302S mutation in the DHCR24 gene is 
predicted to be highly pathogenic by the four tools and it is present in 
two of three porcine DHCR24 transcripts defined in the Ensembl data-
base (http://www.ensembl.org). The DHCR24 enzyme catalyzes the 
conversion of desmosterol to cholesterol, and the complete inactivation 
of the corresponding gene causes desmosterolosis in mice which is often 

Fig. 3. Heatmap indicating the significance of nominal associations between missense SNP classified as having functional effects by 1, 2, 3 or 4 in silico tools and 
serum lipid concentration, carcass and intramuscular fat content and composition traits recorded in 316 Duroc pigs. For the sake of clarity, the 53 missense SNPs not 
predicted to be deleterious by any of the 4 in silico tools have not been taken into account. 
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lethal soon after birth [35]. In the Lipgen population, we did not observe 
any association between the p.P302S mutation and serum cholesterol 
concentrations at either 45 days or 190 days suggesting that this mu-
tation does not impair DHCR24 function (Fig. S2). Data shown in Fig. S2 
show that this lack of association is not due to the absence of pigs with 
homozygous genotypes for the mutation predicted to be functional. 
Another relevant case is represented by the LIPC gene which encodes an 
enzyme hydrolyzing triacylglycerols in plasma lipoproteins to release 
free FA to be used by cells as a source of energy [36]. We have detected a 
p.P212L missense mutation that is consistently predicted to be patho-
genic by SIFT, PROVEAN, MutPred2 and Align GVGD, and it is present in 
one of three porcine LIPC transcripts defined in the Ensembl database 
(http://www.ensembl.org/). The inactivation of the LIPC gene in mouse 
is associated with reduced daily feed intake and increased leanness [36], 
and the hepatic knockout of this gene causes a mild dyslipidemia [37]. 
In the association analysis performed in the current work, we did not 
detect any association between p.P212L genotype and fatness or serum 
lipid traits recorded in Lipgen pigs (Fig. S4). 

Following the same line of reasoning, the p.R161G mutation, present 
in three of the six pig PARK2 gene transcripts, was not associated with 
any fatness phenotype (Fig. S3), despite the fact that this gene is a 
fundamental regulator of fat uptake in mice and its inactivation leads to 
impaired intestinal absorption of lipids and reduced plasma triglycerides 
after intragastric fat challenge [38,39]. In this case, however, the lack of 
pigs homozygous for the mutation predicted to be functional could 
explain the lack of an association between this polymorphism and 
fatness traits (as long as complete dominance is assumed). The potential 
phenotypic consequences of the p.P1080L (present in one of the two 
LRP4 transcripts) and p.S108C (present in the only CAV2 transcript) 
genotypes, that were associated with multiple fatty acid traits, was 
difficult to predict because the abrogation of the function of these two 

genes causes embryonic lethality [40] and severe pulmonary disfunction 
[41], respectively. Moreover, there is evidence that the functional sup-
pression of the caveolin 1 gene causes elevated circulating FA and 
reduced hepatic FA content [42]. Interestingly, the MAF of the p.S108C 
(CAV2, MAF = 0.147) and the p.P1080L (LRP4, MAF = 0.309) muta-
tions are quite high, while as previously commented highly deleterious 
mutations tend to have very low frequencies because they are purged by 
purifying selection. Such observation is inconsistent with a highly 
deleterious effect on biological viability of the two missense mutations 
mentioned before. 

4.3. Most of highly consistent functional mutations do not display 
associations concordant with their expected phenotypic consequences on 
lipid traits 

By performing association studies between each variant and 
phenotype, we have found that two hc functional mutations (p.G25S and 
p.T104M) in the FABP3 gene showed the highest number of nominally 
significant associations with muscle FA composition and carcass traits 
(Table 5, Fig. S1). Besides, the p.G25S mutation was also significantly 
associated with GM C17:0 (q-value = 0.04) after correction for multiple 
testing. In general, associations with minority FA should be interpreted 
with caution because it is difficult to measure their quantities with high 
precision. The FABP3 molecule is a small cytoplasmic protein highly 

Table 4 
Nominally significant associations (P-value <0.05) between porcine lipid traits 
and missense polymorphisms classified as functional by four in silico prediction 
tools (no association was significant after correction for multiple testing).  

Gene SNP ID1 SSC Position 
(Mb) 

Substitution Nominal 
associations 
with lipid 
phenotypes2 

CAV2 rs332492536 18 29,706,153 p.S108C LD MUFA, LD 
C18:1, LD 
C20:1, LD n- 
6/n-3, GM 
C18:3 

DHCR24 rs328825271 6 157,502,221 p.P302S LD C18:1, LD 
C20:2, LD 
C20:3, LD n- 
6/n-3, GM 
C16:1, GM 
C17:1 

LIPC rs712720116 1 113,456,385 p.P212L – 
LRP4 rs328789611 2 15,651,335 p.P1080L LD C16:1, LD 

C18:0, LD 
C16:1, LD 
C18:1, LD 
MUFA, GM 
C12:0, GM 
C14:0, GM 
C16:0, GM 
C18:1 

PARK2 rs341517389 1 5,922,601 p.R161G –  

1 All genotyped SNPs were annotated as missense variants in the Ensembl 
database (Sscrofa 11.1) version 106 and Biomart portal (http://www.ensembl. 
org/biomart/). 

2 SSC: porcine chromosome, GM: gluteus medius muscle, LD: longissimus dorsi 
muscle, C14:0: Myristic, C16:1: Palmitelaidic, C17:0: Margaric, C17:1: Hepta-
decenoic, C18:0: Stearic, C18:1: Octadecenoic, C18:3: α-Linolenic, C20:1: 
Gondoic, C20:2: Eicosadienoic, C20:3: Eicosatrienoic, C20:5: Eicosapentaenoic, 
MUFA: Monounsaturated FA, n-6/n-3: Omega-6 to − 3 ratio. 

Table 5 
Nominally significant associations (P-value <0.05) between porcine lipid traits 
and missense polymorphisms classified as functional by three in silico prediction 
tools (associations with q-values <0.1 are shown in bold).  

Gene SNP ID1 SSC2 Position Substitution Nominal 
associations 
with lipid 
phenotypes 

ACSM3 rs328465555 3 25,262,463 p.I190T LD C22:6 
FABP3 rs326530011 17 16,028,772 p.G25S LD CHOL, 

GM C10:0, 
GM C16:1, 
GM C17:0, 
GM C22:6 

rs341327293 17 16,029,010 p.T104M GM C16:0, 
GM C17:1, 
GM SFA, GM 
UFA, GM n- 
6/n-3, GM 
C18:2 
GM n-6, GM 
PUFA, 
BFT34R, 
BFTLR, 
FHT, CW, 
BFT34RPS 

JMJD1C rs335786128 14 66,665,158 p.S2018F GM C18:3, 
LD34R 

MC4R rs81219178 1 160,773,437 p.D298N – 
MLXIPL rs788027215 3 10,900,920 p.G683R GM C17:0, 

GM CHOL 
ZNF648 rs341953239 9 123,508,330 p.S343W LD C20:1, 

GM C20:3  

1 All genotyped SNPs were annotated as missense variants in the Ensembl 
database (Sscrofa 11.1) version 106 and Biomart portal (http://www.ensembl. 
org/biomart/). 

2 SSC: porcine chromosome, GM: gluteus medius muscle, LD: longissimus dorsi 
muscle, C10:0: Capric, C16:0: Palmitic, C16:1: Palmitelaidic, C17:0: Margaric, 
C17:1: Heptadecenoic, C18:2: Linoleic, C18:3: α-Linolenic, C20:1: Gondoic, 
C20:3: Eicosatrienoic, C22:6: Docosahexaenoic, SFA: Saturated fatty acid, UFA: 
Unsaturated fatty acid, PUFA: Polyunsaturated fatty acid, GM n-6: Omega-6, n- 
6/n-3: Omega-6 to − 3 ratio, CHOL: Cholesterol, BFT34R: backfat thickness 
between the third and fourth ribs, BFTLR: backfat thickness measured in the last 
rib, HW: ham weight, LE%: lean percentage, CW: carcass weight, BFT34RPS: 
BFT between the third and fourth ribs prior slaughter, FHT: fresh fat ham 
thickness and LD34R: loin depth between the third and fourth ribs. 
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expressed in the skeletal muscle and heart which acts as a lipid “chap-
erone” modulating the solubility, mobility, and utilization of FA 
[43,44]. In previous studies, the polymorphism of the porcine FABP3 
gene was associated with intramuscular fat content [45–48] and 
composition traits [49] as well as with backfat thickness [50], an 
outcome that is consistent with our results and emphasizes the interest 
of characterizing the functional impact of this mutation with an in vitro 
assay. 

In contrast, the remaining hc mutations did not show associations 
with lipid phenotypes that become altered in knockout mice or related 
genetic models, whenever such evidence was available. For instance, the 
JMJD1C gene induces lipogenesis in vivo and modulates hepatic and 
plasma triglyceride levels [51], but the p.S2018F genotype does not 
show any association with serum lipid traits in our study (Fig. S5). 
Similarly, MLXIPL is a transcription factor modulating lipogenesis and 
its variation is associated with plasma triglyceride levels in humans 
[52], but the p.G683R genotype does not show such association in our 
resource population (Fig. S7). More interesting is the case of the p. 
D298N mutation in the MC4R gene, because MC4R deficiency leads to 
hyperphagia, obesity and increased growth in mice [53] and, more 
importantly, the p.D298N mutation has been associated with fatness, 
growth, and feed intake traits in pigs [54]. In our study, we did not 
detect any association between this polymorphism and obesity traits 
(Fig. S6). Interestingly, Fan et al. [55] performed functional tests to 
assess the ligand binding and signaling properties of the p.D298N allelic 
variant in transiently transfected HEK293T cells and did not find any 
evidence of functional differences between the two D and N alleles. In 
contrast, Zhang et al. (2020) reported that the N allele has a decreased 
basal constitutive activity and less surface expression than the D allele 
[56]. 

4.4. Predicted functional effect severity of missense substitutions does not 
correlate with the outcome of association analyses 

We have explored the associations of the 97 genotyped SNPs with 48 
lipid traits to determine whether there is any relationship between the 
predicted severity of mutations and the number and/or significance of 
such associations. Obviously, not all lipid metabolism genes have the 
same impact on the determinism of fatness traits, but this would be very 
difficult to weigh from a biological standpoint. In fact, in this study, we 
did not observe co-localizations between missense SNPs showing sig-
nificant associations with lipid traits and QTLs for lipid phenotypes 
detected in the same Lipgen population [9,57,58]. This may be due to 
the limitations of genome-wide association analyses in small sample size 
populations, which can fail to detect loci with small effects or rare 
variants with strong effects [57]. Furthermore, changes at the protein 
level may not always result in noticeable consequences on polygenic 
traits. Even the complete loss of protein function may only result in small 
changes of the phenotype. For example, Matsukawa et al. [59] reported 
that mouse knockout for the NPR3 gene, which plays a key role in 
determining blood pressure, produces a change of not >8 mm of Hg in 
homozygous mutants but not in the heterozygous ones. 

Our general assessment is that there is not a strong relationship be-
tween the predicted severity of missense mutations and their association 
with lipid phenotypes. Not only most of vhc and hc mutations did not 
show associations with traits that in the corresponding knockout mice 
models were altered, but, moreover, we do not observe an increased 
number of associations, or more significant associations, for vhc or hc 
mutations when compared to the set of mutations without enough evi-
dence of having functional effects. This result could be partly due to the 
fact that, for several missense mutations analyzed in the current work, 
there is a lack of pigs homozygous for the variant predicted to be non- 
functional (under a complete dominance inheritance model heterozy-
gous individuals should show a fully normal phenotype because the 
functional allele compensates the non-functional one) or their numbers 
are quite small (making difficult to obtain a significant result). Another 

important limitation of our study is the lack of endophenotypes defining 
protein activity for genes under investigation. Such source of informa-
tion would have provided more valuable clues about the consequences 
of mutations predicted to be functional than raw phenotypes which have 
a highly complex genetic basis. 

Despite these caveats, results obtained in humans and mouse are 
consistent with our observation that mutations mapping to porcine lipid 
metabolism genes and predicted to have functional consequences by 3 or 
4 in silico tools do not seem to determine the phenotypic variation of 
fatness traits recorded in Duroc pigs. For instance, Ernst et al. [32] 
compared the performance of four prediction tools using a representa-
tive number of BRCA1/2 missense variants and concluded that poor 
specificity and high proportion of false positives made it very difficult to 
anticipate the pathogenicity of such missense mutations. Dorfman et al. 
[3] and Michels et al. [60] reached similar conclusions when contrasting 
in silico predictions about the functional consequences of missense 
mutations in the CFTR gene and the severity of cystic fibrosis. In another 
study, Miosge et al. [5] detected 33 de novo missense mutations in 23 
genes with fundamental immunological functions by sequencing the 
genomes of mice treated with N-ethyl-N-nitrosourea. Miosge et al. [5] 
predicted the functional consequences of these mutations with Poly-
Phen2, SIFT, MutationAssessor, Panther, CADD and Condel, and they 
also determined their potential effects by analyzing individuals homo-
zygous for the predicted in vivo knockout phenotype. Concordance be-
tween predictions and observations was low e.g. only 20% of missense 
substitutions classified as deleterious by PolyPhen2 showed an observ-
able phenotype in homozygous individuals [5]. This outcome could be 
due to genetic compensation, but when they compared in silico pre-
dictions with “in vitro” functional data, concordance improved only to a 
limited extent. These results highlight the intrinsic limitations of antic-
ipating the phenotypic consequences of missense substitutions based on 
in silico predictions made with dedicated bionformatic tools. In stark 
contrast with simple Mendelian phenotypes, complex traits depend on 
multiple genetic and environmental factors as well as on intricate 
interaction networks. This circumstance exacerbates even more the 
limitations of current bioinformatic tools to predict the potential impact 
of missense mutations on traits of economic interest in pigs and other 
farm species. 
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