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Abstract

Mosquito surveillance consists in the routine monitoring of mosquito populations: to determine 
the presence/absence of certain mosquito species; to identify changes in the abundance and/or 
composition of mosquito populations; to detect the presence of invasive species; to screen for 
mosquito-borne pathogens; and, finally, to evaluate the effectiveness of control measures. This 
kind of surveillance is typically performed by means of traps, which are regularly collected and 
manually inspected by expert entomologists for the taxonomical identification of the samples. 
The main problems with traditional surveillance systems are the cost in terms of time and human 
resources and the lag that is created between the time the trap is placed and collected. This lag 
can be crucial for the accurate time monitoring of mosquito population dynamics in the field, 
which is determinant for the precise design and implementation of risk assessment programs. 
New perspectives in this field include the use of smart traps and remote monitoring systems, 
which generate data completely interoperable and thus available for the automatic running 
of prediction models; the performance of risk assessments; the issuing of warnings; and the 
undertaking of historical analyses of infested areas. In this way, entomological surveillance could 
be done automatically with unprecedented accuracy and responsiveness, overcoming the problem 
of manual inspection labour costs. As a result, disease vector species could be detected earlier and 
with greater precision, enabling an improved control of outbreaks and a greater protection from 
diseases, thereby saving lives and millions of Euros in health costs.

Keywords: mosquito monitoring, remote surveillance, acoustic sensor, optical sensor, intelligent 
sensor, smart trap, machine learning, Internet of Things (IoT)

Mosquito surveillance and traditional monitoring methods

Mosquitoes (Diptera, Culicidae) are responsible for the transmission of diverse medically and 
veterinary important disease agents (viruses, protozoans and other parasites) which cause serious 
diseases in humans and animals, such as malaria, dengue, Zika, yellow fever, chikungunya, West 
Nile virus, Eastern equine encephalitis or avian malaria. Entomological surveillance plays a key role 
in human and veterinary disease surveillance within the framework of the ‘One Health’ concept, 
where interdisciplinary collaboration and communication in healthcare is crucial (ECDC 2012, 
2014, WHO 2017). A paradigmatic example of this ‘One Health’ approach would be the West Nile 
Virus (WNV) surveillance. This implies a coordinated strategy of Public Health actors that carry out 
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the diagnoses of possible infected horses and humans that are dead end hosts of the pathogen; 
the monitoring of Culex mosquitoes that may act as vectors in the areas with WNV cases; and the 
detection of possible infected birds which may act as reservoirs of the virus.

Mosquito surveillance methods should provide clear and meaningful information for program 
managers and policy-makers for the purpose of: (1) determining and quantifying the composition 
of mosquito populations which are present in a specific area; (2) monitoring changes in mosquito 
populations; (3) identifying the presence of new invasive mosquito species which can act as disease 
vectors; (4) detecting mosquito-borne diseases; (5) determining which control measures need 
to be conducted; (6) performing the quality assessment of control measures; and (7) designing 
accurate risk assessment programs in order to prevent and manage potential disease outbreaks 
(Flores 2015, Schaffner et al. 2014).

Mosquito surveillance can be understood as a task involving the routine monitoring of immature 
stages and adult mosquito populations over the course of an entire mosquito season (Flores 2015, 
Silver 2008). Several methodologies have been developed to sample and analyse different stages 
of the biological cycle of mosquitoes (egg, larvae and adults), although most of them mainly 
target adults since only adult female mosquitoes are responsible for disease transmission (Focks 
2003, Sivagnaname and Gunasekaran 2012). Thus, with the exception of pathogen monitoring in 
immature stages to investigate vertical transmission, adult mosquito surveillance is probably the 
most precise approach to properly monitor mosquito populations for vector-borne disease (VBD) 
risk assessment. While some methodologies focus on resting mosquitoes, such as aspiration in 
vegetation that is performed with entomological aspirators, most have been developed to catch 
flying mosquito females when seeking hosts for blood feeding or gravid females when seeking 
oviposition sites (Becker et al. 2010, Service 1993).

To allow standardised monitoring of adult mosquito populations, many types of traps have been 
developed to attract different target species. Some rely solely on a conventional incandescent 
filament light bulb as the main source of attraction or use an ultra-violet light source while others 
add CO2 or chemical attractants to the light source. Various models are commercially available. 
The most popular are adapted models of CDC mosquito light-traps, EVS trap (Figure 1) and in the 
last decade, BG sentinel traps (Figure 2) with different combinations of light, CO2 and chemical 
lure (EMCA 2020). Other traps include the Reiter trap for gravid females, and even types developed 
not just for mosquito sampling but for mosquito control as well, such as the Mosquito Magnet™, 
among others. Despite these methodologies, during the first decade of the 21st century the 
need became evident for a much greater effort to develop, manufacture and market new tools 
that would be effective for different species and environmental conditions and that could be 
standardised in different countries in order to obtain more significant and comparable data (Qiu 
et al. 2007).

Several studies have compared the efficacy of different commercial trapping devices, reporting 
differences in both performance and efficacy depending on the target mosquito species, the 
type of attractant and other environmental factors (Brown et al. 2008, Li et al. 2016, Lühken et al. 
2014, Roiz et al. 2012). Generally, BG-traps have shown better, or at least a similar performance, 
compared to CDC, EVS or MM traps (Li et al. 2016, Lühken et al. 2014), but the results have been 
dependent on multiple factors and varied from one study to other. It is important to consider, as 
pointed out by Brown et al. (2008), that differences between traps could affect the estimations of 
species abundance and composition.
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Figure 1. Classic EVS mosquito trap baited with a container with CO2 pellets.

Figure 2. BG sentinel trap.
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Traditional surveillance methods have two main limitations. The first is the cost in terms of time 
and professionals involved in the surveillance (trap placement, sample collection and transport 
of the sample to the laboratory for the counting and identification of captured mosquitoes). The 
second limitation is the inevitable time lag between the moment that the trap is placed in the 
field and the moment the sample is collected. This lag can be crucial, potentially resulting in the 
dynamics of mosquito populations in the field not being accurately and timely monitored (Focks 
2003).

In this scenario, artificial intelligence (AI) is forging a path in improving traditional entomological 
surveillance methods by generating new techniques for the automated remote monitoring of 
mosquito populations. These new approaches include the emergence of automated electronic 
devices which remotely classify mosquitoes based on the analysis of their flight pattern (Potamitis 
2014, Santos et al. 2019).

In addition, the use of the ‘Internet of Things’ (loT) is enabling that the information collected 
remotely in the field could be sent wirelessly to a cloud server in real time (Eliopoulus et al. 2018, 
Geier et al. 2016, Potamitis et al. 2017). Thus, eliminating the gap between trap installation and 
collection, representing mosquito population dynamics much more accurately.

New technological approaches for remote mosquito surveillance through the 
perspective of artificial intelligence

Acoustic sensing technology

Mosquito flight tones have been extensively studied since the first half of the 20th century, mainly 
through the use of acoustic methods such as microphones (Kahn and Offenhauser 1949). Mosquito 
flights produce a tone as a side effect of wing movement. This tone is also a communication signal 
that is frequency-modulated during courtship and can be detected by other mosquitoes thanks to 
certain properties of their antennae including Johnston’s organ at the base of each antenna (Cator 
et al. 2009, Gibson et al. 2010). Rapid frequency modulation flight in males occurs as a response 
to female wing beat frequency and is likely to represent a pre-copulatory controlled flight to 
maintain a close-range position while attempting to seize and engage terminalia with the female 
(Simões et al. 2016). Females have the ability to reject or accept the male mating attempt. In the 
event that the interaction between male-female pairs is successful, copulation will take place 
preceded by an acoustic harmonic convergence (Aldersley and Cator 2019, Aldersley et al. 2016).

With these acoustic properties in mind, entomologists have been pursuing the control of 
mosquitoes by means of sound traps for many decades (Kahn and Offenhauser 1949) and continue 
to do so (Diabate and Tripet 2015, Rohde et al. 2019). Sound traps, such as the Sound Gravid 
Aedes Trap (SGAT), the Male Aedes Sound Trap (MAST) (Staunton et al. 2020a), or other modified 
commercial traps with an acoustic basis, are nowadays being used as cost-effective alternatives 
for field use in areas with sterile male mosquito rear-and-release programs (Johnson and Ritchie 
2016, Rohde et al. 2019, Staunton et al. 2020b).

The acoustic detection of insects is a highly active research field, especially in its application 
to food crops and stored grain pests (Eliopoulos et al. 2016, Hagstrum et al. 2012, Potamitis et 
al. 2009) but also with respect to pests of medical importance, such as mosquitoes (Salim et al. 
2017, Vasconcelos et al. 2019). In recent years, so-called deep learning techniques have become 
widely used in bioacoustic classification tasks based on the analysis of mosquito wing beat 
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frequency. However, since mosquitoes from different species can actually have overlapping 
frequency distributions, it seems insufficient to use the fundamental wing beat frequency as the 
sole distinguishing characteristic between species (Chen et al. 2014). To improve the classification 
method, metadata such as time or place of recording can be used as additional features to 
differentiate between mosquitoes with varying circadian activity or geographic distribution.

Current approaches for mosquito wing-beat analysis and classification through acoustic sensors 
include the use of mobile phones as an easily available tool for entomological surveillance 
(Fernandes et al. 2020, Li et al. 2017, Mukundarajan et al. 2017). Mobile phones offer the advantage 
of automatically registering time and location stamps for acoustic data and allow the collection of 
other metadata such as photographs which can support identification. Studies based on mobile 
phone-based bioacoustics demonstrate that even low-cost smartphones are capable of accurately 
recording mosquito wing-beat frequencies, enabling continuous and large-scale data mapping 
which can be particularly useful in resource-constrained areas (Mukundarajan et al. 2017). In this 
sense, there are some open data platforms that rely on the participation of non-expert volunteers 
to record the wing-beat sound of the mosquitoes. Two of the most popular ones are ‘ABUZZ’ 
(Mukandarajan et al. 2019) and ‘Humbug Zooniverse’ (Kiskin et al. 2020).

The inconvenience of acoustic methods is the limitation to the quality of the microphone 
recordings of the insects in field conditions. Many mosquito bioacoustics experiments are 
undertaken in unnatural conditions with tethered individuals or in acoustically isolated spaces, 
thus leading to difficulties to apply these models in in field conditions (Arthur et al. 2014). Given 
this difficulty in microphone-sourced field recordings, classification models based on machine 
learning algorithms commonly suffer from scarce and poor-quality data.

Chen et al. (2014) reported a ‘lack of progress’ in acoustic technology applied to the automatic 
classification of insects. This can be attributed to limitations of the microphones themselves. 
One such limitation is microphone sensitivity. The sound attenuates with the distance from the 
microphone according to an inverse squared law, which means that if an insect is flying three times 
more distant from the microphone, the sound intensity will drop to one ninth. When increasing 
the microphone sensitivity to mitigate this effect, any surrounding noise will saturate the signal. 
Filtering insect detection can then become a complex task, as well as requiring more system 
processing power. Besides, systems based on a microphone and recorder set spend the entire 
experiment running time making recordings, thus increasing power consumption.

The foremost challenges for acoustic sensing approaches are related to dealing with the problem 
of the signal-to-noise ratio of recorded audio and power consumption. As a result, optical 
approaches for remote sensing and automatic classification have gained in popularity as they 
offer significant performance advantages (Potamitis and Rigakis 2015, Santos et al. 2018, 2019).

Optical sensing technology

Optical technology for mosquito wing beat analyses dates back to the second half of the 20th 
century when the first photoelectric cell was discovered to detect the light modulation of a 
flying insect crossing its field of detection (Richards 1955). This was the starting point for the 
implementation of numerous studies on the use of optical sensors to monitor mosquito flight 
patterns which continue to the present day (Gibson et al. 2010, Kirkeby et al. 2016, Ouyang et al. 
2015, Potamitis 2014, Potamitis and Rigakis 2016a).
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The diverse light source options for optical sensing include laser and LED (light emitting diodes). 
Potamitis and Rigakis (2015) developed a novel noise-robust optical sensor to record insect wing 
beats and analysed the recording performance of both types of light sources, comparing them to 
the recordings of an acoustic sensor. The results showed that both performed as well or even better 
than the acoustical sensing approach in any ambient light condition. Unlike acoustic sensors, 
optoelectronic sensors only record when triggered by flying insects, allowing large savings in 
power consumption. In addition, optoelectronic sensors are capable of modulating the optical 
signal at high frequencies, thus eliminating major optical interference sources and increasing 
sensor efficiency without further data processing requirements (Santos et al. 2018).

Optical sensors basically comprise an optical emitter (a laser beam or a LED array) and an optical 
receiver (a phototransistor, mainly photodiodes) creating a FOV (field of view). When an insect 
crosses the FOV, fluctuations in light intensity (caused by the partial occlusion of the light from 
the wing’s movement) are perceived by the optical receiver. The signal containing information 
on the detected insect’s wing beat frequency is then amplified, filtered, and demodulated in an 
audio signal (Batista et al. 2011, Potamitis and Rigakis 2016b). The conversion of the optical signal 
into audio data allows comparison of the results obtained with those available in the literature 
for acoustic systems.

The practical applications of these new findings involve extending the use of optical sensors 
from laboratory tests to the production of massive datasets and the creation of smart insect 
traps that can count, recognise, and alert for the presence of insects of economic and public 
health importance (Potamitis et al. 2018). Novel optoelectronic sensor prototypes are being 
trained with several machine learning algorithms, mainly Bayesian classifiers, to learn how to 
distinguish between mosquito species and mosquito gender (male and female) based on their 
wing beat frequency (Batista et al. 2011, Genoud et al. 2018, 2019; Ouyang 2015; Potamitis and 
Rigakis 2016b). While high accuracy values in gender discrimination are now commonly obtained, 
classification to species level is still challenging (Genoud et al. 2018), although the use of deep 
learning techniques has shown promising levels of precision (Fanioudakis et al. 2018).

The biggest difficulty appears when trying to distinguish two different mosquito species from the 
same genus as they may have overlapping frequency spectrums. This suggests that the fundamental 
wing beat frequency alone, although it may be sufficient to distinguish the mosquito genus or 
gender, it may be insufficient on its own to properly classify mosquito species. This inefficacy will 
be even more apparent in the context of field measurements, where plenty of mosquito species, 
Diptera and other insects may be present. A common way to improve identification accuracy is to 
add other predictor variables in addition to fundamental wing beat frequency (Batista et al. 2011, 
Chen et al. 2014, Genoud et al. 2019). For instance, Genoud et al. (2019) proposed the use of the 
depolarisation ratio of the mosquito body together with the wing-beat frequency to distinguish 
gravid from non-gravid females, which reported high accuracy results.

Another option to increase the accuracy of automated taxonomical classification of mosquitoes 
in field studies may be the use metadata (Chen et al. 2014): meteorological features (temperature, 
humidity, and air pressure), spatiotemporal features (distance from freshwater, land cover type, 
human/livestock population density, local agricultural type, time of year, time of day, etc.) and 
circadian rhythms. Certain species are more adapted to survive in particular environmental 
conditions, e.g. many mosquitoes are native to tropical and subtropical regions, where the climate 
is typically warm and wet. The ambient temperature can be determinant in insect classification 
since it influences insect metabolism, leading to an increase in the wing beat frequency. Villarreal 
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et al. (2017) reported an increase of 8-13 Hz per degree Celsius (°C) in females of Aedes aegypti, 
revealing a highly dependent relationship between these factors. Circadian rhythm is also an 
important feature to be considered since mosquitoes have different peaks of activity throughout 
the day which can be of help to distinguish between species. However, circadian rhythm cannot 
be used without at least a rough estimate of the population of each considered species (Genoud 
et al. 2019). If a species with a small population has an activity peak at the same time as another 
with a much larger population but with lower activity, although their probability of interaction 
with the sensing instrument may be equal, the classification system will consider the former to be 
much more likely, thus inducing a bias in the results.

New optoelectronic devices for remote sensing include, in addition to insect counts and 
classification, the use of IoT technology. This allows that the entire information that is being 
registered remotely in the field, is also being transmitted wirelessly to a central monitoring 
agency in real time for risk assessment analysis. In this way, novel optoelectronic sensors can be 
self-organised in networks that collectively report data at local, regional, country, continental, 
and global scales. The emergence of so-called e-traps has the potential to profoundly impact 
entomological surveillance and pest control (Potamitis et al. 2017).

Smart trap technology

Novel smart traps entail the possibility of automating everything that is still presently done 
manually (collecting insect information in the field, processing that information, and sending it to 
vector control technicians) thanks to the use of IoT technology. The development of IoT solutions 
using conventional approaches is complex and time consuming due to the lack of common 
architectures and languages, and the widespread use of non-standard, proprietary interfaces and 
sensor data formats. Numerous developers, companies and R&D groups have been using state-of-
the art commercial platforms like Arduino (Italy), Raspberry Pi (UK) or BeagleBone (USA), which 
are capable of prototyping straightforward sensor applications with low technology readiness 
levels (TRL) of between 1 and 4. However, such platforms may be insufficient if advances are 
to be made to TRL 5 prototyping and above, especially if dealing with sensors that are not off-
the-shelf. This implies that off-the-shelf platforms offer limitations to reach TRL 9 (go-to-market), 
where manufacturers will be fighting issues of functionality, cost, power consumption, scalability, 
margin, manufacturability, testability, packaging, mechanical robustness and working conditions 
(e.g. temperature, humidity), etc.

To address this, IRIDEON (Spain) has developed SENSCAPE®, a disruptive, modular, standards-based 
framework for the development of fast IoT time-to-market solutions. There are several advantages 
to developing an IoT application with SENSCAPE: (1) ready-made hardware platforms – static and 
mobile; (2) standards based, (3) interoperability; (4) scalability; (5) low power consumption; (6) 
reduced costs; (7) smartphone integration; (8) customisation and (9) cloud-ready. The general 
idea is to use SENSCAPE® as the platform to combine a sensor capable of capturing physical 
information from flying insect, with two emerging disruptive technologies: IoT and AI.

The IoT refers to systems of physical devices that receive and transfer data through wireless 
networks without human intervention, while AI refers to the combination of algorithms developed 
to have machines reasoning like human beings. The combination of these various elements could 
lead to a solution where each trap acts as an interconnected device that can remotely analyse each 
captured flying insect, just as a professional entomologist would do.
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For the moment, only one optical sensor product designed for the remote monitoring of mosquito 
populations is commercially available, the Biogents BG-Counter (Germany) (Geier et al. 2016). 
This device is able to distinguish between mosquitoes and other different insects, and to count 
mosquitoes, but does not provide further information on mosquito species, sex or other attributes. 
In parallel, there is another optoelectronic sensor prototype that has been created by IRIDEON 
(Spain), which is already capable of distinguishing between species, sex and age of mosquitoes in 
laboratory conditions (Brosa 2018). The mosquito sensor is an optoelectronic device comprising 
an emitter, an array of LEDs, and an array of phototransistors acting as photoreceptors connected 
in parallel. This optical setup generates a light field. The sensor constantly captures the input from 
the sensor but only processes the samples when a triggering event occurs, i.e. when there is a 
perturbation of the light field. Optical sensor, microprocessor, and wireless communications are 
integrated into the electronics module.

Smart trap stations can be deployed as a wireless sensor network (WSN) with bidirectional 
management of data between sensors and a cloud application framework. When an insect is 
drawn into the trap equipped with a sensor, its characteristic wing flapping modulates the light 
field. Captured signals are sampled at a rate sufficient to resolve the fundamental frequency of 
the wing-flap as well as several overtones. The light field is also perturbed by other physical 
elements associated to the flying insect: the kinetics of flight (speed, direction, and trajectory) 
and morphology (body/wing size and shape). Each of these physical elements of flying insects 
that cause a perturbation of the light field leads to a species-specific signature. The signal of this 
signature is filtered, amplified, acquired and processed using a combination of AI methods (e.g. 
rule-based systems, genetic algorithms, artificial neural networks and fuzzy models). Depending 
on the tests performed, these methods can be used to count each event that perturbs the light 
volume, determine if the event is caused by a flying insect, analyse if the flying insect is a mosquito 
or not, classify the genus of the insect, identify the species, identify the sex and estimate the age 
in days (Figures 3 and 4).

These assets have been benchmarked by experts and judged to be at TRL 7 for genus (accuracy 
90-92%), species (accuracy 75-80%) and sex classification (accuracy 93-99%) of Aedes albopictus, 
Ae. aegypti and Culex pipiens. The sensor also achieved TRL 5 for age classification of each of these 
species (accuracy 61-95%), giving an overall TRL 6 (Brosa, 2018). Further work is being done to 
improve the overall accuracy of the solution to reach TRL 9 by 2022.

How intelligent traps can improve mosquito monitoring and arbovirus control 
programs

Integrated pest management (IPM) relies on the accuracy of pest population monitoring (Freier 
and Boller 2009). Without gathering information of population dynamics, and related ecological 
factors, it is almost impossible to execute an appropriate control at the right place and time. 
Mosquitoes are usually spread across large areas and boundaries, and the use of traditional 
surveillance methods which are strongly dependent on human labour is unsuitable for efficient 
large-scale monitoring (BIPRO 2009). Fully automated remote monitoring could be the key in this 
context.

Earth observation service for preventive control of insect disease vectors – the VECTRACK project

Obtaining high quality field information is notoriously costly and time consuming. The amount 
of money required can significantly be reduced by combining cost-efficient sampling strategies, 
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Figure 3. Vector control technician installing a trap with IRIDEON’s smart mosquito sensor.

Figure 4. Dashboard of the software cloud application of the smart mosquito sensor.
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remote sensing, and spatial modelling techniques to compute risk maps of vector presence and 
abundance, as well as maps indicating high-risk zones for the establishment of exotic species at 
local or regional level. Such maps could then serve as a basis for targeted surveillance and VBD risk 
assessments. To address this, IRIDEON is heading a Horizon 2020 (H2020) project called VECTRACK, 
in collaboration with AVIA-GIS (Belgium), the IRTA-CReSA research institute (Spain) and the public 
health institute CEVDI/INSA (Portugal). VECTRACK constitutes a novel and unique opportunity, 
integrating the added value of Earth observation (EO), spatial-positioning and information and 
communications technology (ICT) technologies: Copernicus data + operational vector mapping 
with spatial modelling + IoT ground sensors + IoT smart mosquito traps + IoT interoperable 
disease vector data cloud application. The proposed innovation is a service platform for which 
Copernicus is a critical part of the solution. The main objective is to develop and validate a new 
Copernicus-based EO service to monitor disease vectors, associated to a novel ground wireless 
sensor network comprising miniaturised nodes measuring micro-environmental data (T °C, %RH, 
etc.), together with a smart trap station acting as a gateway.

Earth observation platform can measure land surface temperature and vegetation, which act as 
the main drivers of vector population (C3S 2020). Given the importance of the evolution of the 
meteorological parameters, the technical requirements for these satellites are: (1) high temporal 
resolution (1 day); (2) medium spatial resolution (1 km); and (3) measurement in the visible/near 
infrared part of the electromagnetic spectrum for derivation of vegetation indices and in thermal 
infrared for temperature.

In this context, it is important to mention the contribution of AVIA-GIS in their development 
of VECMAP, a seamless system and service that integrates the entire process of producing risk 
maps into a single package that supports all the steps required to map and model, at various 
scales, the distribution of vectors and to plan surveillance and control programs. This system 
provides all the satellite data required to obtain the risk maps, however is limited by the fact that 
it uses data from periodical manual trap inspections. This value proposition is strengthened by 
IRIDEON’s smart IoT ground sensors, deployed in the field integrated with standard commercial 
mosquito traps. With the combination of all approaches, it is finally possible to remotely and 
automatically acquire near real-time ground data on mosquito counts, sex, species, age and local 
micro-environmental parameters. This data is invaluable as an automatic and direct input to feed 
mosquito-borne epidemic models.

Future approaches

With the use of novel smart traps, new challenges will appear; the automated identification of 
different mosquito species should be improved to the same level as when it is performed by 
a skilled entomologist and should be supervised until this degree of accuracy is reached. New 
maintenance and logistic protocols will need to be developed, as traps will go from being mobile 
and temporary to fixed and permanent.

With new methodologies, surveillance and control programs can be significantly affected as they 
require important scientific and logistic efforts for the management of large amounts of mosquito 
traps and collected samples. With the use of remote monitoring systems, once the system has been 
developed, these efforts can be redirected to other areas and most of the classification work would 
be done in an automatic way, but always with an accurate quality control system. The data will 
be completely interoperable and thus available for the automatic running of prediction models, 
the performance of risk assessments, the issuing of warnings and the undertaking of historical 
analyses of infested areas. In this way, vector control professionals could establish automatic 
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surveillance programs with unprecedented accuracy and responsiveness, overcoming the labour 
costs of manual inspections. As a result, disease vector species will be detected earlier with greater 
precision, enabling improved control of outbreaks and a lower risk of disease transmission.
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