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Abstract 20 

Anthropogenic global change is driving an increase in the frequency and intensity of drought 21 

and flood events, along with associated imbalances and limitation of several soil nutrients. In 22 

the context of an increasing human population, these impacts represent a global-scale 23 

challenge for biodiversity conservation and sustainable crop production to ensure food 24 

security. Plants have evolved strategies to enhance uptake of soil nutrients under 25 

environmental stress conditions; for example, symbioses with fungi (mycorrhization) in the 26 

rhizosphere and the release of exudates from roots. While crop cultivation is managed for the 27 

effects of limited availability of nitrogen (N) and phosphorus (P), there is increasing evidence 28 

for limitation of plant growth and fitness due to low availability of other soil nutrients such as 29 

the metals potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) that may become 30 

increasingly limiting for plant productivity under global change. The roles of mycorrhizas and 31 

plant exudates on N and P uptake have been studied intensively; however, our understanding 32 

of effects on metal nutrients is less clear and still inconsistent. Here, we review the literature 33 

on the role of mycorrhizas and root exudates in plant uptake of key nutrients (N, P, K, Ca, Mg, 34 

and Fe) in the context of potential nutrient deficiencies in crop and non-crop terrestrial 35 

ecosystems, and identify knowledge gaps for future research to improve nutrient- uptake 36 

capacity in food crop plants. 37 
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Introduction 39 

Anthropogenic global climate change is caused by ongoing increases in atmospheric 40 



concentrations of carbon dioxide (CO2) and other greenhouse gases; elevated CO2 41 

enhances the availability of carbon (C) for photosynthesis, which may enhance plant growth. 42 

As a result, the plant demand for nutrients increases as does the content of these nutrients 43 

in plant biomass. This may lead to a decrease in the concentration of nutrients, such as 44 

phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe). However, in 45 

some heavily fertilized croplands, soil concentrations of N, and particularly P, are increasing, 46 

especially, in the case of P, because of immobilization in the soil (Penuelas et al., 2020a). 47 

This leads to a scenario of higher ratios of C and frequently of N and P to elements such as 48 

K, Ca, Mg, and Fe (Paseka et al., 2019). However, in natural terrestrial ecosystems, higher 49 

ratios of C and N to elements such as P, K, Ca, Mg and Fe are generally observed 50 

(Penuelas et al., 2013,2020b; Paseka et al., 2019). These changes in C:element ratios 51 

indicate reductions in plant element concentrations (dilution effects) that have implications 52 

for nutrient element concentrations of food crops (Paseka et al., 2019). Plant nutrient-53 

acquisition capacities can be affected by global changes in temperature, water availability, 54 

atmospheric CO2 concentrations, and atmospheric N deposition (Brouder and Volenec, 55 

2008; Elbasiouny et al., 2022). For instance, the impacts of some global change drivers 56 

such as acid rain,57 

N deposition, drought, and species invasion on soil pH (Wei et al., 2020; Zia et al., 2020; 58 

Tipping et al., 2003; Ouyang et al., 2022) enhance soil mineral leaching and thus soil 59 

nutrient mobilization (Cui et al., 2019; Wei et al., 2020), with different effects on specific 60 

nutrients (Sharpley, 1991; Cui et al., 2019). Given that elemental ratios are a key driver of 61 

ecosystem structure and crop production, with associated implications for human health, 62 

continuing global nutrient imbalances and dilution effects under global change are of great 63 



concern for sustainable crop production and food security (Paseka et al., 2019; Penuelas et 64 

al., 2020b; Nicholson et al., 2021). 65 

Plants have evolved a wide array of strategies to enhance the soil nutrient- 66 

acquisition capacity by roots, including symbiotic mycorrhizal associations and release of 67 

exudates into the rhizosphere. While the role of these strategies in the uptake of N and P 68 

has been widely studied and reported, their contribution to plant absorption of the principal 69 

metal nutrients, K, Ca, Mg, and Fe, is less clear, with studies reporting contrasting findings 70 

for some nutrients (Gryndler et al., 1991; Rosenstock et al., 2016). Therefore, the aim of our 71 

review is to synthesize the literature on the role of mycorrhizas and root exudates in plant 72 

uptake of key nutrients (N and P) and metals (K, Ca, Mg, and Fe) in the context of potential 73 

nutrient deficiencies in crop and non-crop terrestrial ecosystems and identify knowledge 74 

gaps for the focus of future research. 75 

Methodology 76 

We have reviewed "Web of Science", "Google Scholar" and "Scopus" using combinations of 77 

keywords, such as: "root & exudate & nitrorgen", "root & exudate & phosphorus", "root & 78 

exudate & calcium", "root & exudate & magnesium", "root & exudate & potassium", "root & 79 

exudate & mycorrizha", "root & arbuscular & nitrogen", "root & arbuscular & phosphorus", 80 

"root & arbuscular & calcium", "root & arbuscular & magnesium", "root & arbuscular & iron", 81 

"root & exudate & nitrogen", "root & arbuscular & potassium", "root & ectomycorrhiza & 82 

nitrogen", "root & ectomycorrhiza & phosphorus", "root & ectomycorrhiza & calcium", "root & 83 

Ectomycorrhiza & magnesium", "root & Ectomycorrhiza & potassium", "root & 84 

ectomycorrhiza & iron", "root & ectendomycorrhizas & nitrogen". 85 



Consistent role of mycorrhizas and root exudates in phosphorus uptake 86 

Although plants directly take up P via the root system, this is dependent on mycorrhizas in 87 

most plant species (Smith and Read, 2008; Chiu and Paszkowski, 2019). Two main types of 88 

fungi establish symbioses with plant roots. Ectomycorrhizal fungi produce a sheath around 89 

the roots of host plants and a Hartig net, a network of inward-growing hyphae, that extends 90 

into the root, penetrating between the epidermis and cortex of ectomycorrhizal plants, but 91 

they do not penetrate the root cell plasma membrane, while arbuscular mycorrhizal fungi 92 

(AMF) penetrate the cell wall but not the plasma membrane/cytosol (Smith and Read, 2008; 93 

Peay et al., 2016) (Figure 1). Several studies suggest that in mycorrhizal associations the 94 

fungus is primarily fed by soluble sugars and lipids originating from sucrose transported 95 

towards the roots (Gutjahr et al. 2011; Rich et al., 2017). The sugar fluxes are coordinated 96 

by transport systems, comprising sucrose (SUTs), monosaccharide (MST), and the SWEET 97 

sugars transporter family (Doidy et al. 2012). However, once sucrose reaches the arbuscular 98 

mycorrhized (AM) root, some specific type II transporters seem to return sugars back 99 

towards the plant cells (Bitterlich et al. 2014), thus suggesting that there can be a 100 

mechanism of reverse transport to influence symbiotic fungal growth. Experimental studies 101 

have reported the key roles of arbuscular mycorrhizas (AM) and ectomycorrhizas (EM) in 102 

increasing plant P uptake (Caris et al., 1998; Etesami et al., 2021), and it has been 103 

suggested that most plant species can improve their ability to take up highly immobile soil P 104 

by symbiosis with mycorrhizal fungi (Smith and Read, 2008; Albornoz et al., 2021). 105 

Mycorrhizas are less important for more mobile macronutrients such as N that are readily 106 

taken up by roots (Lambers et al., 2008). Symbioses between types of Glomeromycota 107 

fungi, which can form AM fungi, and vascular plants are common, occurring in about 80% of 108 



terrestrial plant species, and are predominantly involved in the enhancement of P uptake, as 109 

well as greater acquisition of additional nutrients, such as ammonium (NH4+) (Brundrett, 110 

2002; Lambers et al., 2008). AM fungi (AMF) frequently produce numerous vesicles that 111 

serve as storage structures for the accumulation of P and other nutrients, such as K, Ca and 112 

Fe, in colonized nutrient- deficient plants (Olsson et al., 2011). The uptake mechanisms of 113 

different minerals by mycorrhizas vary depending on the nutrient. For example, while Ca 114 

released from apatite is deposited as Ca oxalate crystals on the surface of rhizomorphs, 115 

phosphate P that is released from apatite, the primary mineral containing P (Pallon et al., 116 

2007), is transported by EM mycorrhizas, increasing P availability and plant uptake 117 

(Wallander et al., 2002;2003). In AM fungi H+/Na+ coupled transporters have been 118 

described that enable orthophosphate (Pi) uptake over a wide soil pH range (Johri et al., 119 

2015). Uptake of negatively charged orthophosphate requires an energy-driven transport 120 

process mediated by phosphate transporters and energised by H+-ATPases (Krajinski et al., 121 

2014; Wang et al., 2014; Walder et al., 2015). Some of these transporters are specifically 122 

involved in transport of phosphate released by mycorrhizal fungi. In AM associations, the 123 

fungi release phosphate from their arbuscules within cortical cells, and the plant uses these 124 

transporters to take up phosphate across the periarbuscular membrane into cortical cells 125 

(Harrison et al., 2002). Most Pht1 genes are strongly expressed in root epidermal cells 126 

under P deficiency, including root hairs and cortical cells, suggesting a role in Pi uptake 127 

(Chiou et al., 2001; Ai et al., 2009). The mycorrhiza-specific Pi transporters all belong to the 128 

family of Pht1 transporters, but cluster in two different subgroups, respectively named 129 

subfamilies I and III (Bucher, 2007). Most members of subfamily I are only expressed in 130 

arbuscule-containing cortical cells during AM symbiosis (Harrison et al., 2002; Javot et al., 131 



2007). AM-induced Pht1 genes of subfamily III are more broadly expressed in plant roots but 132 

specifically induced in cortical cells during AM symbiosis (Rausch et al., 2001; Maeda et al., 133 

2006; Nagy et al., 2005; Karandashov et al., 2004; Tamura et al., 2012; Paszkowski et al., 134 

2002; Guimi et al., 2005; Glassop et al., 2005; Nagy et al., 2006). Interestingly, mycorrhiza-135 

specific induction of Pht1 transporter genes is conserved between perennial woody and 136 

herbaceous plant species (Loth-Pereda et al., 2011). Remarkably, several studies have 137 

found that these Pi transporters are crucial for AM mycorrhization and their maintenance 138 

(Maeda. et al., 2006; Javot et al., 2007; Yang et al., 2012). 139 

In ECM fungi, several genes putatively encoding Pi transporters have been 140 

identified (Casieri et al., 2013; Kohler et al., 2015). Most of these transporters are H+/Pi 141 

transporters, suggesting thatthe efficiency of fungal Pi uptake strongly relies on external pH 142 

values. Two H+/Pi transporters (HcPT1.1, HcPT2) found in extra-radical hyphae of 143 

Hebeloma cylindrosporum, could mediate Pi uptake when soil P availability was low (Garcia 144 

et al., 2013; Tatry et al., 2009). Similarly to HcPT1.1, upregulation by low Pi has been found 145 

for other H+/Pi transporters in Tricholoma spp. (Kothe et al., 2002), Boletus 146 

edulis (Wang et al., 2014), Rhizopogon luteolus (Zheng et al., 2016), and Leucocortinarius 147 
bulbiger (Zheng et al., 2016). 148 

Other mycorrhizal types that are more specialized in specific plant taxa or 149 

environmental conditions also enhance a plant's capacity to take up soil nutrients (Figure 1). 150 

In orchid mycorrhizas, comprising fungi and orchid nonphotosynthetic host tissues, the 151 

fungus is thought to provide both inorganic and organic nutrition to the plant and apparently 152 

does not receive anything in return. However, recent research has shown a flow of nutrients 153 

back to the fungal partner from the nonphotosynthetic orchid host (Cameron et al., 2006; 154 



Dearnaley and Cameron, 2016). Ericaceous plants rely on ericoid mycorrhizal (ERM) fungi 155 

for nutrient acquisition (Vohnik, 2020; Leopold et al., 2021) (Figure 1), particularly for uptake 156 

of P (Mitchell and Gibson, 2006; Leopold et al., 2021) and N (Mitchell and Gibson, 2006) 157 

under limiting conditions. Ectendomycorrhizas are restricted mostly to the plant genera 158 

Pinus (pine), Picea (spruce) and to a lesser extent Larix (larch) (Mikola, 1988; Turgeman et 159 

al., 2016) (Figure 1), but their establishment has also been observed in other plant taxa such 160 

as in Helianthemum sessiliflorum (Turgeman et al., 2016). These ectendomycorrhizas 161 

present many of the same characteristics as ectomycorrhizas (EM), but also show extensive 162 

root tissue penetration (Mikola, 1988; Yu et al., 2001). The formation of ectendomycorrhizas 163 

begins with the formation of a Hartig net, which grows behind the apical meristem of the 164 

growing root tip. Following this, in the older parts of the root, intracellular penetration 165 

increases, with the oldest cells being filled with coils of septate hyphae (Yu et al., 2001). 166 

Some variants of ectendomycorrhizas have been described with some slight morphological 167 

differences, but with the 168 

fundamental structure of ectendomycorrhizas. 169 
Cavendishioid ectendomycorrhizas have been described in the Andean clade of Ericaceae 170 
(Setaro et al., 2006). In this case, the formation of a hyphal sheath is observed with 171 
intercellular penetration of fine hyphae and colonization of the cortical cells by swollen 172 
hyphae of the same fungus. Another type of ectendomycorrhiza is arbutoid mycorrhiza, 173 
which is a symbiosis between fungi and some plant species of the Ericaceae family as for 174 
example the described association between the ascomycete Leotia lubrica and the Ericacea 175 
species Comarostaphylis arbutoides (Kuhdorf et al., 2015). Monotropoid 176 
ectendomycorrhizas occur in species of Monotropa, nonchlorophyllous plants growing under 177 
forest trees like Fagus, Pinus, Quercus, and Salix as epiparasites depending on the fungal 178 
partner, and in this case the hyphae are restricted to epidermal cells and do not penetrate 179 
the host cell (Manoharachary et al., 2002). Feremycorrhiza (FM) is a recently discovered 180 
plant-fungus symbiosis, which enhances plant growth and nutrition without the development 181 
of interface structures; the range of plant species that establish FM relationships is currently 182 
unknown (Kariman et al., 2020). 183 

Mycorrhizas also allow plants to take advantage of phosphate-solubilizing bacteria. 184 

Certain bacteria can indirectly improve P mobilization and its uptake by plants. Some 185 

phosphate-solubilizing bacteria do not only mobilize P into forms that AM fungi can absorb 186 



but they can interact mutually favoring the growth of each other (Minaxi et al., 2013; 187 

Ordonez et al., 2016; El Maaloum et al., 2020). In this regard, many bacterial species 188 

belonging to Pseudomonas, Azotobacter, Bacillus, Burkholderia and Rhizobium genera 189 

have the capacity to mobilize poorly-available P, including organic and inorganic forms to 190 

soluble orthophosphate by lowering soil pH and/or solubilizing/desroption P from Fe oxides 191 

and hydroxides and Ca salts using exuded organic acids (Rodriguez and 192 

Fraga, 1999; Marschner et al., 2001; Toljander et al., 2007; Browne et al., 2009; Ordonez et 193 
al., 2016; El Maaloum et al., 2020). Moreover, bacteria associated with extraradical AM 194 
hyphae can also secrete phosphatases (Sato et al., 2015, 2019) and phytase secretion has 195 
also been associated with extraradical AM hyphae (Wang et al., 2017). Phosphatase 196 
release has been commonly observed in AM and ECM (Araujo et al., 2016; Meeds et al., 197 
2021: Hirano et al., 2022; Qi et al., 2022). 198 

There is growing knowledge of the effects of root exudates on the availability of soil 199 

P for use by plants. Exudates comprise a range of substances, such as carboxylates, 200 

sugars, mucilage, protons, water, phenolics, amino acids, and enzymes, such as 201 

phosphatases and phytases (Tarafdar and Claassen, 2005; Lambers et al., 2006). The 202 

direct exudation of acid phosphatase has been observed in several species (Playsted et al., 203 

2006; Aslam et al., 2022). High activities of alkaline phosphatase have been observed in the 204 

rhizosphere in some studies (Song et al., 2012; Touhami et al., 2020), and root exudates 205 

promote the growth of Saccharimonadales that then improve the alkaline phosphatase 206 

activity in the maize rhizosphere (Wang et al., 2022). The composition and release of root 207 

exudates are dynamic and vary in response to soil P availability; for example, release of 208 

compounds, such as strigolactones (Yoneyama et al., 2008), carboxylates (Zhou et al., 209 

2021), and flavonoids (Tomasi et al., 2008), is stimulated by P deficiency in the rhizosphere, 210 

where the strigolactones (sesquiterpene lactones) stimulate AM fungal spore germination 211 

and hyphal branching (Bouwmeester et al., 2007). Stimulation by root exudates of 212 

mycorrhizal establishment is more common, through inhibition of root pathogens, and 213 



stimulation of germination of mycorrhizal spores and hyphal branching that extend the root 214 

zone and density required for greater uptake of less-mobile nutrients (Hassan and 215 

Mathesius, 2012; Tian et al., 2021). 216 

However, there are also studies that have shown that root exudates can inhibit the 217 

development of AM fungi (Vierheilig et al., 2003). Effects of mycorrhizas on root exudation 218 

vary with type, but this requires further study; for example, greater fluxes in exudates have 219 

been observed in Pinus species colonized by EM under drought and N- limiting conditions 220 

(Liese et al., 2018), while no changes have been observed for AM- colonized tomato 221 

(Solanum lycopersicum) roots (Lioussanne et al., 2009). Similarly, the role and impacts of 222 

climate change on root exudation are yet to be fully understood; however, Zhou et al. (2021) 223 

recently reported that prolonged warming increases root exudation and Ca-P mobilization, 224 

by nonmycorrhizal Cyperaceae, indicating that plants may rely increasingly on inorganic P 225 

mobilization under high P demand to sustain increased growth under warmer conditions. 226 

Plant uptake of P is problematic when it is strongly bound to soil particles and precipitated in 227 

minerals, such as in calcareous soils (Lambers et al., 2009). However, root exudates 228 

mobilize P by desorbing from Fe-and Al- phosphates oxydes and hydroxides in different soil 229 

types (Subbarao et al., 1997; Shen et al., 2001), such as in calcareous (Hinsinger, 2001, 230 

Vance et al., 2003; Zohlen and Tyler, 2004) and siliceous soils (Dakora and Phillips, 2002; 231 

Louw-Gaume, et al., 2017) (Figure 2). In particular, exuded carboxylates mobilize 232 

phosphates (Lambers, 2022). This capacity to mobilize P from minerals also depends on the 233 

nature of root exudates, and their relative proportions (Pearse et al., 2007; Shi et al., 2020). 234 

However, non- mycorrhizal plant species tend to be characterized by specialized root 235 



systems, for example cluster roots, dauciform roots or capillaroid roots (Lambers, 2022), and 236 

associated with a high level of production of root exudates as an evolved nutrient- mining 237 

strategy, particularly in environments with limited P availability (Lambers et al., 2009). The 238 

presence of specialized roots associated with P acquisition does not invariably imply faster 239 

P uptake than in plants that release carboxylates without specialized structures. For 240 

example, dauciform roots, which are found in some Cyperaceae and are functionally similar 241 

to cluster roots, are formed under low-P conditions (Gusewell, 2016), and increase P 242 

availability through the release of carboxylates and phosphatases (Gusewell, 2016, Playsted 243 

et al., 2006, Shane et al., 2006). However, Gusewell and Schroth (2017) found no 244 

differences in the acquisition of various inorganic and organic P compounds in Cyperaceae 245 

with and without dauciform roots, because Cyperaceae without dauciform roots also release 246 

carboxylates and phosphatases. In the case of species with cluster roots, there is significant 247 

variability in root architecture and exudation and different species have a distinct capacity to 248 

mobilize P from specific chemical forms in soil (Pang et al., 2021). These plants exude huge 249 

amounts of protons, carboxylates, and phosphatases, particularly in comparison with 250 

noncluster rooted plants (Skene, 2000; Uhde-Stone, 2017). Furthermore, cluster roots also 251 

release large amounts of flavonoids (e.g., genistein), possibly to prevent microbial 252 

degradation of exuded carboxylates (Tomasi et al., 2008). The array of exudates in terms of 253 

composition and concentration changes depending on the environment and plants, such as 254 

soil P- availability, root age and species (Shane and Lambers, 2005). 255 

There is evidence that root exudates from nonmycorrhizal plants inhibit 256 

mycorrhization in mycorrhizal plant species, through the release of allelopathic compounds, 257 



especially in nutrient-rich habitats (Lambers and Teste, 2013). This suggests that 258 

nonmycorrhizal species may have developed a greater capacity to release exudates than 259 

mycorrhizal species; this possibility warrants future research. Species-level comparisons of 260 

the P uptake show that root diameter is a good predictor of dominant mechanism (root 261 

morphology-growth, exudates, and mycorrhizas); for example, P- uptake in species with 262 

thinner roots is positively correlated with root branching and length and negatively correlated 263 

with colonization by AMF and exudate production, whereas P uptake in species with thicker 264 

roots is positively correlated with AMF colonization and/or P-mobilizing exudates in the 265 

rhizosheath (Wen et al., 2019). 266 

Several studies have considered the use and manipulation of mycorrhizas to 267 

improve P-uptake capacity (Deguchi et al., 2012; Schneider et al., 2019; Rahou et al., 2021) 268 

and root exudates to improve P-uptake efficiency in crop species as a strategy to ensure 269 

global food security (Haijar and Hodgkin 2007; Devempewolf, 2017; Preece and Penuelas, 270 

2020; Verma and Verma, 2021). Further research is required to fully understand the roles of 271 

mycorrhizas and root exudates in P uptake (Raven et al., 2018; Wang and Lambers, 2020; 272 

Albornoz et al., 2021; Honvault et al., 2021). 273 

Plant strategies for nitrogen uptake 274 

The role of mycorrhizas in N uptake is thought to be less determinant than that in P uptake, 275 

because N is more mobile and, therefore, the availability of N is frequently much greater 276 

(Jung and Tamai, 2012; Wang et al., 2018). Thus, studies of effects of mycorrhizas on N 277 

uptake tend to be restricted to N-limited soils, including young soils, such as in central- north 278 

Europe and North America (Lambers et al., 2008; Makarov, 2019). While plant N uptake 279 



increases with AM fungi (Jentschke et al., 2001; Labidi et al., 2011; Mardukhi et al., 2011; 280 

Zhu et al., 2016; Verzeaux et al., 2017; Sales et al., 2018) and N is absorbed mainly as 281 

NH4+ (Lopez-Pedrosa et al., 2006), it may be more related to the absorption of inorganic N 282 

or organic forms released by the hydrolytic action of saprotrophic microorganisms, rather 283 

than to the direct release by AM fungi of hydrolytic enzymes (Makarov, 2019). In boreal 284 

regions, where plant growth is limited by N, rather than P, EM fungi mobilize polymeric N 285 

compounds and acquire amino acids (Plassard et al., 2002; Smith and Read, 2008). ERM 286 

and EM fungi release hydrolytic enzymes that hydrolyze soil organic N, releasing NH4+ and 287 

amino acids that are then taken up directly by roots or in sites where the fine roots are 288 

covered by the fungal sheath/mantle the nutrient uptake and transfer to the plant are 289 

mediated by fungal hyphae and transfer via the Hartig net (Makarov, 2019). In contrast, 290 

some studies have reported that AM fungi decrease plant N acquisition (Wang et al., 2018). 291 

Thus, despite there being fewer studies on N than on P (Smith and Smith, 2011), current 292 

understanding of effects of mycorrhizas on N uptake allows for the statement of some 293 

general concepts (Makarov, 2019). Rapid NH4+ transfer occurs around arbuscular branches 294 

by recruiting NH4+ in the acidic periarbuscular space and releasing the uncharged NH3 into 295 

the cytoplasm of the arbusculated cells (Guether et al., 2009; Kobae et al., 2010; Koegel et 296 

al., 2013). Some of the plant NRT (nitrate transporters) are induced by the presence of the 297 

fungus in both AM- and ECM-colonized roots (Guether et al., 2009; Hildebrandt et al., 2002; 298 

Willmann et al., 2014), but also induced in response to high-phosphate or low-nitrate 299 

concentrations (Willmann et al., 2014; Hohnjec et al., 2005). This complex gene expression 300 

modulation suggests a mechanism of NO3 acquisition depending on the plant and fungal 301 

nutritional status as well as competition with other nutrients that are taken up with other 302 



nutrients. 303 

Plant roots exude metabolites that enhance N mobilization, allowing plant uptake 304 

of N from the rhizosphere (Li et al., 2021; Tawaraya et al., 2018). Several studies have 305 

shown that root exudates are positively associated with mobilization and plant uptake of N 306 

(Li et al., 2021; Coskun et al., 2017). Moreover, exudate composition varies among plants, in 307 

response to P or N demand even in the same plant species (Tawaraya et al., 2018). Under 308 

N-limiting conditions, root exudates released by legumes enhance plant associations with 309 

N2-fixing bacteria (Coskun et al., 2017; Chai and Schachman, 2021) and flavonoids in 310 

exudates may stimulate or inhibit expression of rhizobial nodulation genes, affecting 311 

chemoattraction of rhizobia to the root (Li et al., 2016). Positive impacts of root exudates on 312 

mobilization and plant uptake of N have been attributed, at least in part, to direct effects of 313 

exudates on the soil microbial community (Li et al., 2021; Mastny et al., 2021). Root 314 

exudates can inhibit the rates of soil nitrification and other microbially-based N 315 

transformations (Sun et al., 2016; Coskun et al., 2017). Root exudates may increase N 316 

availability and plant uptake in the rhizosphere through mobilization of organic N and N- 317 

monomers bound to mineral surfaces (Jilling et al., 2018), and also through the release of 318 

proteases catalyzing protein mineralization and thus generating more sources of N for plant 319 

uptake (Paungfoo-Lonhienne et al., 2008; Kohli et al., 2012). Certainly, all these rhizosphere 320 

bacteria possess the metabolic machinery to hydrolyze and mineralize organic forms of N, 321 

P, and S. The contents of these microbial cells are subsequently released, either through 322 

cell lysis, or following protozoic predation (Bonkowski, 2004; Richardson et al., 2009). This 323 

liberates inorganic N, P, and S forms into the soil, including ammonium, nitrate, organic-N, 324 

phosphate, and sulfate that are the preferred nutrient forms for plants (van der Heijden et al., 325 

2008; Jacoby et al., 2017). 326 



Uncertainty of mycorrhizal effects on plant metal nutrient uptake: an incomplete puzzle 327 

Experimental studies have demonstrated greater soil mobilization and plant content of Ca, 328 

K, Mg, and Fe when plants are associated with EM fungi (Finlay, 1995; Jentschke et al., 329 

2001; Ahonen-Jonnarth et al., 2003; Jourand et al., 2014; Artega-Leon et al., 2018; Jarosz 330 

et al., 2021) and AM (Caris et al., 1998; Mardukhi et al., 2011; Balsam et al., 2013; 331 

Chorianopolou et al., 2015; Zhang et al., 2015; Prity et al., 2020; Jarosz et al., 2021); 332 

however, the underlying mechanisms of these positive effects remain to be resolved. 333 

While it has long been known that K is essential for plant function and yield, and AM 334 

and EM fungi have been shown to improve its uptake in plants (Pallon et al., 2007; Smith 335 

and Read, 2008; Garcia and Zimmermann, 2014; Dominguez-Nunez et al., 2016), the 336 

contribution of mycorrhization to plant K nutrition is not well understood and scarcely studied 337 

(Garcia and Zimmermann, 2014). AM lead to the over-expression of several K- (Benedito et 338 

al., 2010; Liu et al., 2019) and Fe-transporter genes (Kabir et al., 2020). Similarly, EM also 339 

increase plant K+ transporters and channels (Benito and Gonzalez- Guerrero, 2014; Garcia 340 

et al., 2014; Guerrero-Galan et al., 2018a,b,c; Frank and Garcia, 2021). Strong associations 341 

between mycorrhizal P and K uptake have been observed in both AM (Olsson et al., 2011) 342 

and EM symbioses (Jung and Tamai, 2013; Garcia et al., 2014). The EMfungus Pisolithus 343 

microcarpus colonizing Eucalyptus globulus seedling was able to mobilize K from clay 344 

minerals using EM exudates (Yuan et al., 2004; Dominguez- Nunez et al., 2016). Plant 345 

uptake of Mg was positively associated with AM colonization (Giri and Mukerji, 2004; Chen 346 

et al., 2017; Zare-Maivan et al., 2017), including in Mg- limited soils (Zhang et al., 2015; Xiao 347 

et al., 2014). However, the increase 348 

in nutrient uptake as a result of AM colonization may depend on the specific nutrient 349 



investigated. Zare-Maivan et al. (2017) observed that mycorrhizal colonization increased Mg 350 
uptake but decreased K uptake of maize plants colonized by Glomus sp. While the presence 351 
of EM fungi reduced root K and Mg concentrations (Zhang and George, 2010), it enhanced 352 
K and Mg uptake in Pinus sylvestris (Christophe et al., 2010), and increased tree Mg 353 
concentrations, although the exact mechanisms were not studied (Artega-Leon et al., 2018). 354 
In this regard, Rosenstock et al. (2016) observed that ectomycorrhizal communities may 355 
respond to increased host-tree P demand by increased mobilization of P-containing 356 
minerals, but also observed that this response to nutrient demand does not appear to exist 357 
for K or Mg limitation. Empirical studies have shown that Ca is important in the formation, 358 
maintenance, and function of AM fungi (Jarstfer et al., 1998; Navazio and Mariani, 2008; 359 
Kosuta et al., 2008; Liu et al., 2013; Khabou et al., 2014; Piao et al., 2016) including being 360 
involved in AM fungal signaling pathways to facilitate fungal penetration of root tissues 361 
(Chabaud et al., 2011). Presence of EM fungi improves availability of metal elements, as 362 
indicated by greater Ca uptake in temperate forests, in which there is strong leaching of Ca 363 
from silicate minerals, due to its release from apatite (Blum et al., 2002; Pyrlo et al., 2013), 364 
and AM also increase K and Ca uptake due to the greater volume of soil explored (Ruan et 365 
al., 2013; Flores et al., 2019). Although studies of effects of mycorrhization on plant Fe 366 
uptake are limited, mobilization of Fe and Si are positively correlated with hyphal length (van 367 
Hees et al., 2004) and mycorrhization is positively associated with plant Fe concentrations 368 
(Ibiang, et al., 2017), indicating that mycorrhizas enhance plant Fe uptake. AM-mediated 369 
plant Fe uptake is mostly based on enhancing the availability of Fe, rather than on up-370 
regulation of Fe transporters in 371 
Medicago sativa under low-Fe conditions (Awad et al., 1994; Rahman et al., 2020). EM- 372 
mediated plant Fe uptake has been linked to the release of siderophores and/or organic 373 
acids EM (Rineau and Garbaye, 2010). While there is evidence for mobilization of K, Ca, 374 
Mg, and Fe, in addition to P, from minerals of widespread types of soil parent material, such 375 
as basalt, rhyolite, granite, schist by AM fungi (Burghelea et al., 2015) and from perlite by 376 
EM fungi (Hobbie et al., 2009), a clear understanding of the variation and key underlying 377 
mechanisms among plant taxa and types of mycorrhizas is lacking. For example, leaching of 378 
K and Mg meditated by EM fungi has been reported for a range of minerals, whereas 379 
mobilization mediated by fungi varies with type of mineral and species of fungus (Van Scholl 380 
et al., 2006a). Uptake of nutrients varies with species of mycorrhizal fungus (Seven and 381 
Polle, 2014; Chen et al., 2018). Some studies have shown that the same plant species 382 
colonized by different species mixtures of EM fungi have a distinct capacity for plant uptake 383 
of different nutrients such as N (Sousa et al., 2010) or K (Yuan et al., 2004; Frank and 384 
Garcia, 2021). Thus, future studies are required to test effects and drivers of mycorrhizal 385 
fungal species on K, Ca, Mg and K plant uptake. 386 

Do root exudates contribute to uptake of metal nutrients? 387 

Despite some initial studies reporting negative correlations between the amount of root 388 

exudates and uptake of K, Ca, Mg, and Fe (Jones et al., 1994; Matsiu, 1997), more recent 389 

studies have reported that root exudates enhance plant uptake of K (Wang et al., 2011; 390 

Ruan et al., 2013), Ca (Ohta and Hiura, 2016), Mg (Ohta and Hiura, 2016), and Fe 391 

(Marastoni et al., 2020; Chai and Schachtman, 2021). Supply of K and Ca is positively 392 

associated with plant root length and density and with exudation of organic acids (Lijun et 393 

al., 2011; Xu et al., 2021). Indeed, releases of root exudates mobilize K in the rhizosphere, 394 



leading to subsequent increases in plant K uptake (Xu et al., 2021; Li et al., 2020; Yang et 395 

al., 2020), likely due to carboxylates in exudates that are positively correlated with K uptake 396 

across a range of plant species (Suriyagoda et al., 2012). This release of root exudates that 397 

mobilize K which depends on soil K availability (Li et al., 2020; Yang et al., 2020), varies with 398 

genotype within a species, such as observed in Camelia sinensis and Nicotiana tabacum (Li 399 

et al., 2020; Yang et al., 2019), with K-stress- tolerant genotypes releasing greater amounts 400 

of organic acids in root exudates (Yang et al., 2020). Metabolomic studies have revealed 401 

that greater amounts of organic acids in root exudates improves plant uptake of water and 402 

nutrients (Xu et al., 2021), consistent with the role of K in plant adaptations to drought stress 403 

(Sardans and Penuelas, 2015; 2021). 404 

Despite the key roles of Ca and Mg in plant nutrition, there are only very few studies 405 

on the role of root exudates on the mobilization and availability of Ca and Mg in the 406 

rhizosphere. These studies report a positive effect of root exudates on soil Ca and Mg 407 

availability (Tauson and Arocena, 2009; Ohta and Hiura, 2016). Higher oxalate 408 

concentrations are associated with greater soil Mg availability and root Mg uptake in Pinus 409 

sylvestris (van Scholl et al., 2006b). The presence of Ca and Mg in the rhizosphere can 410 

promote the alleviation of Al toxicity by promoting the exudation of organic acids such as 411 

citric and malic (Silva et al., 2001; Ma et al., 2014; Kochian et al., 2015). Moreover, Mg 412 

enhances the citrate concentration at the root tip and stimulates citrate secretion by roots. 413 

An increased Al tolerance in the presence of low Mg levels could, thus, result from 414 

detoxification of Al in the rhizosphere through formation of non-toxic Al-citrate complexes 415 

(Silva et al., 2001). Khorassani et al. (2011) observed that root exudates of Beta vulgaris 416 



contain abundant salicylic and citramalic acid that bind with 417 

Ca and thus reduce the formation of insoluble complexes of Ca with P. In contrast, they 418 
readily desorb P from Fe and Al oxides and hydroxides (Bhadoria et al., 2002). Moreoves, 419 
have been shown that root exudates are not able to increase rhizosphere P availability to 420 
mobilize P from calcium phjosphates (Bhadoria et al., 2002). 421 

Root exudates mobilize Fe, due to ligand exchange and chelation and the release of 422 

Fe3+-reducing compounds (Marastoni et al., 2020). Fe-binding phenolic compounds are 423 

released in root exudates (Aggarwal et al., 1998). Phenolic compounds in microbial 424 

siderophores are also involved in the mobilization and plant uptake of Fe in the rhizosphere 425 

(Nuzzo et al., 2018). In addition, grasses secrete phytosiderophores that act as strong 426 

chelators of Fe3+, triggering the mobilization of Fe (Kobeyashi and Nishizawa, 2012; Chen 427 

et al., 2017c) as well as P (Zhou et al., 2022). Vempati et al. (1995) observed that Glycine 428 

max root exudates reduce Fe3+ in soil to Fe2+, thus increasing Fe availability in the 429 

rhizosphere; this reduction was likely caused by phenolics in root exudates which were 430 

oxidized to diquinones. This role of exudates in Fe uptake is particularly important in 431 

calcareous soils, where Fe deficiency is due to Fe precipitation with carbonates (Rahman et 432 

al., 2008). Secondary metabolites, such as coumarins (Rajniak et al., 2018; Rosenkranz et 433 

al., 2021; Sarashgi et al., 2021) and diverse structurally diverse redox- active molecules 434 

(Rajniak et al., 2018) in plant root exudates have been linked to greater rhizosphere Fe 435 

availability. Conversely, greater exudate concentrations of dehydroascorbic acid, galactonic 436 

acid, sucrose, and thymidine (Valentinuzzi et al., 2015) have been linked to Fe deficiency. 437 

The role of riboflavin in exudates in Fe uptake varies, including the facilitation of reductase 438 

activity and dissolution of Fe(III), which has low solubility, and modification of the 439 

rhizosphere microbiome (Chen et al., 2017c). 440 

Increases in root exudates linked to Ca and/or Fe deficiency solubilize metals and increase 441 
uptake of toxic metals, such as cadmium (He et al., 2017). Finally, the composition of root 442 
exudates can vary in the same plant species depending on the most limiting nutrient (Astolfi 443 
et al., 2020; Dietz et al., 2020). For example, Zea mays root exudates contain higher 444 



concentrations of glutamate, glucose, ribitol, and citrate under Fe-deficient conditions, higher 445 
concentrations of y-aminobutyric acid and carbohydrates under P-limited conditions, lower 446 
concentrations of sugar alcohols and sugars, particularly glycerol, ribitol, fructose, and 447 
maltose under K-limited conditions, and lower concentrations of amino acids under N 448 
deficiency (Carvalhais et al., 2011) (Figure 2). 449 

One key aspect to consider is the impact that increasing incidences of drought may 450 

have on root exudates. Under increasingly severe drought, root organic C increases 451 

concurrently with declining predawn leaf water potential and photosynthesis, and root 452 

exudate composition mirrors the physiological gradient of drought severity (Ulrich et al., 453 

2022). Despite reducing C uptake, plants may increase release of C in root exudates with 454 

increasing drought severity (Ulrich et al., 2022). In a metabolomic study Gargallo-Garriga et 455 

al. (2018) observed that root exudates of Quercus ilex seedlings under drought consisted 456 

mainly of secondary metabolites (71% of total metabolites) associated with plant responses 457 

to drought stress. Conversely, the metabolite composition under recovery shifted towards a 458 

dominance of primary metabolites (81% of total metabolites). These results indicate that 459 

roots exude a wide range of root metabolites. The maintenance of root exudates under 460 

drought has also been related to a fast re- initiation of soil microbial activity after rewetting, 461 

allowing fast nutrient mobilization and uptake that should favor plant recovery (Karlowsky et 462 

al., 2018). However, when drought is intense, a threshold is reached and plant exudate 463 

production recovery cannot be achieved (Gargallo-Garriga et al., 2018) reducing the 464 

nutrient-uptake capacity. 465 

Conclusions and future directions 466 

While some effects of mycorrhizas and exudates on nutrient uptake are common across 467 

plant taxa, such as the universal presence of carboxylates in root exudates, the type and 468 

structure of mycorrhizal associations and composition of exudates vary with species and 469 



level and type of nutrient limitation. Correlations between root exudates and mycorrhization 470 

in enhanced P uptake are consistent in the literature, while contemporary studies continue to 471 

identify and disentangle those involved in N uptake, N-use efficiency, and soil N cycling. 472 

Root exudates contribute to increased nutrient uptake through reduction, chelation, and 473 

solubilization of nutrients in soil which facilitate their mobilization and availability. The effects 474 

of root exudates may also involve impacts on the rhizosphere microbiome. In summary, the 475 

studies of N and P absorption by plants, taken together, strongly suggest that 476 

nonmycorrhizal plants have evolved the release of exudates more than mycorrhizal plants, 477 

so further research is warranted to confirm it. 478 

In general, specific root exudates tend to enhance mycorrhization, although there is 479 

some evidence for inhibition of other exudates, and little is known about the mechanisms 480 

underlying mycorrhizal mediation of root exudate release. Crop cultivation is managed to 481 

address the effects of limited availability of N and P, but less so for the effects of other soil 482 

nutrients, such as the metals K, Ca, Mg and Fe that may become increasingly limiting under 483 

global change. The roles of mycorrhizas and plant exudates on N and P uptake have been 484 

studied intensively; however, understanding the effects on metal nutrients is less clear and 485 

more inconsistent. A key area for future research, in the context of managing food security 486 

and human health, should thus be the study of these effects, and associated underlying 487 

mechanisms, of root exudates and mycorrhization on the uptake and balance of K and 488 

important other metal nutrients, such as Ca, Mg, and Fe, in cultivated soils for food crops. 489 

For example, it may be possible to improve mycorrhization of crop plants through breeding, 490 

as has been achieved for P- absorption capacity, to reduce the use of nutrients/fertilizers. 491 
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Figure captions 1297 

Figure 1. Structure, form and type of anatomical structures of different types of mycorrhizal 1298 

Associations. 1299 

Figure 2. Root exudate function. Root exudates comprise several compounds that change 1300 

the physico-chemical properties of soil close to the fine roots (rhizosphere) favoring several 1301 

chemical processes able to mobilize nutrients from minerals and make possible its water 1302 

transport to roots and uptake. These exudates also contribute to maintain heterotrophic 1303 

microbes that also contribute with their activities to mobilize nutrients.1304 
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