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Differential gene expression analyses typically focus on departures across mathematical expectations (i.e. mean) from two or
more groups of microarrays, without considering alternative patterns of departure. Nevertheless, recent studies in humans and
great apes have suggested that differential gene expression could also be characterized in terms of heterogeneous dispersion
patterns. This must be viewed as a very interesting genetic phenomenon clearly linked to the regulation mechanisms of gene
transcription. Unfortunately, we completely lack information about the incidence and relevance of dispersion-specific differential
gene expression in livestock species, although a specific Bayes factor (BF) for testing this kind of differential gene expression
(i.e. within-probe heteroskedasticity) has been recently developed. Within this context, our main objective was to characterize the
incidence of dispersion-specific differential gene expression in pigs and, if possible, providing the first evidence of this phenomenon in
a livestock species. We evaluated dispersion-specific differential gene expression on ovary, uterus and hypophysis samples from 22 F2
Iberian3Meishan sows, where a total of 15 252 probes were interrogated. For each tissue, heteroskedasticity of probe-specific
residual variances was evaluated by three pairwise comparisons involving three physiological stages, that is, heat, 15 days of
pregnancy and 45 days of pregnancy. Between 2.9% and 37.4% of the analyzed probes provided statistical evidence of within-tissue
across-physiological stages dispersion-specific differential gene expression (BF.1), and between 0.1% and 3.0% of them reported
decisive evidence (BF.100). It is important to highlight that,8% of the heteroskedastic probes were also linked to differential gene
expression in terms of departures among the probe-specific mathematical expectation of each physiological stage. This discarded
the disturbance of scale effects in a high percentage of probes and suggested that probe-specific heteroskedasticity must be viewed
as an independent phenomenon within the context of differential gene expression. As a whole, our results report a remarkable
incidence of dispersion-specific differential gene expression across the whole genome of the pig, establishing a very interesting
starting point for further studies focused on deciphering the genetic mechanisms underlying heteroskedasticity.
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Implications

Dispersion-specific differential gene expression across
physiological stages has been evaluated on ovary, uterus
and hypophysis from 22 F2 Iberian3Meishan sows. The
heteroskedastic model evidenced relevant departures of the
residual variance in 2.9% to 37.4% of the analyzed probes,
highlighting a remarkable incidence of this phenomenon in
pigs. Moreover, scale-effect disturbances were discarded in
most of the probes with dispersion-specific differential gene
expression. These results provided the first evidence of
heteroskedasticity for gene expression in a livestock species,

suggesting the possibility of dispersion-related regulatory
genetic mechanisms involved in sow reproduction.

Introduction

The current availability of low-cost massive platforms for
profiling gene expression levels in domestic species has
opened new research possibilities with a plethora of potential
contributions to our livestock industries. The analysis of these
genomic data tries to identify differential gene expression
(Wolfinger et al., 2001) associated with some phenotype of
interest, for example muscle growth (Reecy et al., 2006) or
stress tolerance (Collier et al., 2006), although all studies
in domestic species typically focus on differences linked to-E-mail: Joaquim.Casellas@uab.cat
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the mathematical expectation (i.e. mean) of two or more
groups of microarrays, without considering alternative patterns
of departure.
In humans, Bachtiary et al. (2006) and Somel et al. (2006)

have provided evidence of differential gene expression in
terms of dispersion parameters, although dispersion-specific
methodologies for microarray experiments were not devel-
oped until the Bayes factor (BF) approach adapted by
Casellas and Varona (2008). In that methodological paper,
the authors revealed a remarkable incidence of genes with
heterogeneous residual variances in great ape fibroblasts,
and discarded the influence of scale effects in the greatest part
of them (Casellas and Varona, 2008). This novel approach
allows for a straightforward screening of dispersion-related
differential gene expression phenomena and provides raw
material for the identification of regulatory genetic mechanisms
involved in the variability of gene transcription.
Unfortunately, we lack of any preliminary information

about the incidence and relevance of this kind of differential
gene expression in the swine species. Within this context,
our principal objective was to analyze gene expression
data from uterus, ovary and hypophysis of 22 F2 Iberian3
Meishan sows, characterizing the incidence of hetero-
geneous residual variances when comparing three different
reproductive stages (i.e. heat, 15 days of gestation and
45 days of gestation).

Material and methods

This research was carried out on frozen tissues and live animals
were not required. Nevertheless, all animal protocols regarding
the original F2 Iberian3Meishan sows were approved by the
Institut de Recerca i Tecnologia Agroalimentàries (IRTA; http://
www.irta.cat) Animal Care and Use committee within the
context of research project AGL2000-1229-C03.

Tissue collection
A total of 61 tissue samples from ovary, uterus and hypo-
physis of 22 F2 Iberian3Meishan sows were recovered at
the commercial slaughterhouse (ESFOSA, Vic, Spain). More
specifically, both the whole hypophysis and one ovary were
collected when possible, whereas a sample from the apical
uterus was obtained close to the oviduct. Samples were
immediately frozen in liquid nitrogen and stored at 2808C
until laboratory processing. All sows were in their fifth
gestation (i.e. they had delivered four times), although they
were slaughtered at different reproductive stages: heat
(HEAT; n5 8), 15 days of pregnancy (15d; n5 7) and
45 days of pregnancy (45d; n5 7). Note that pregnancies
were confirmed before slaughtering by ultrasound. Moreover,
sows contributing to this experiment were selected depending
on their reproductive performance in order to generate two
groups with extreme prolificacy histories measured as the total
number of piglets born per litter, that is, low average litter
size (L; 5.786 2.53 piglets per litter) and high average litter
size (H; 11.4861.47 piglets per litter). A summary of the number

of tissue samples per reproductive stage and performance is
shown in Table 1.

RNA extraction
RNA was extracted from frozen tissue with 1ml of TRIzol
Reagent (Sigma-Aldrich Inc., St Louis, MO, USA), homo-
genized with a motor-driven homogenizer and incubated for
5min at room temperature. 200ml of chloroform was added
to the supernatant and incubated in the same conditions.
After incubation, the sample was centrifuged at 48C for
10min, the aqueous phase was mixed with 200ml of etha-
nol, removed to a filter column (RiboPureTM, Ambion Inc.,
Austin, TX, USA) and filtered by centrifugation (12 000 g for
30 s at room temperature). The filter was washed twice with
Wash Solution (RiboPureTM, Ambion Inc.) and finally, RNA
was eluted in 100ml of Elution Buffer (RiboPureTM, Ambion
Inc.). The quantity of RNA was determined using a NanoDrop
ND-100 (NanoDrop Technologies Inc., Wilmington, DE, USA)
and all samples were adjusted between 0.7 and 1mg/ml. The
quality of the samples was determined by using a 2100
BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA)
with the RNA 6000 Nano Kit (Agilent Technologies).

Microarray processing
Each sample was independently hybridized on a GeneChip
Porcine Genomic array (Affymetrix, Santa Clara, CA, USA)
using the One-Cycle Target Labeling protocol described by
the microarray manufacturers. Hybridization and scanning
were performed in the Unidad de Genómica of Vall d’Hebron
hospital (Barcelona, Spain).

Normalization and analyses of microarray data quality
Quality control of the microarrays was performed with Affy
and SimpleAffy packages of the Bioconductor (Ihaka and
Gentleman, 1996; Irizarry et al., 2003). All the microarrays
fulfilled the quality requirements, thus all of them were used
in the analysis. Data normalization was performed with the
Robust Multichip Average algorithm (Irizarry et al., 2003)
using the RMAExpress package (http://rmaexpress.bmbol-
stad.com/). After filtering, 15 535 probes (each probe is a
fragment of complementary nucleic acid covering genomic
or inter-genomic annotated regions) were used for gene
expression analyses. Probe annotation was first done using
the annotation file supplied by Affymetrix (http://www.
affymetrix.com/index.affx).

Table 1 Number of microarrays for each tissue and physiological stage
combination

Physiological stage

Tissue HEAT 15d 45d

Uterus 41/42 4/3 3/3
Ovary 4/4 4/3 3/4
Hypophysis 4/4 2/2 3/3

1Microarrays from lowly prolific sows.
2Microarrays from highly prolific sows.

Variance heterogeneity in pig microarrays
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Heteroskedastic linear mixed model
For each pairwise comparison between two physiological
stagesV1 andV2 of a given tissue, data from n replicates of
non-competitive hybridization microarrays were available.
Gene expression data were analyzed under the following
hierarchical mixed model:

y ¼ Xl þ Z1p1 þ Z2p2 þ Z3p3 þ Z4p4 þ e

where y was the (nm)3 1 column vector of intensity scores
sorted by microarray, within treatment within probe, and ewas
the (nm)31 column vector of residuals. Preliminary analyses
on this data set suggested significant differential gene expres-
sion on the basis of sow prolificacy. Within this context, sows
were classified as lowly (L) or highly (H) prolific (see Table 1),
and the model accounted for the interaction between sow
prolificacy and physiological stage with four levels, L3V1 (p1;
dimension n13 1) and H3V1 (p2; dimension n23 1), L3V2

(p3; dimension n331) and H3V2 (p4; dimension n43 1),
where n5 n11 n21n31 n4. Note that p1 to p4 accounted for
the effect of each probe, whereas m was a systematic effect
characterizing the overall mean of each microarray, and X, Z1,
Z2, Z3 and Z4 were appropriate incidence matrices.
Following Casellas and Varona (2008), vector e was

assumed to be normally distributed,

e � MVN 0; Rð Þ

with R being the matrix of residual (co)variances. Assuming
null residual (co)variances (Kendziorski et al., 2003; Newton
et al., 2004; Casellas et al., 2008), heteroskedasticity
between physiological stages was analyzed by stating

R ¼ �m
i¼ 1

I1s2e ið Þpi 0

00 I2s2e ið Þ 1�pið Þ

" #

where I1 was a (n11 n2)3 (n11 n2) identity matrix, I2 was
a (n31 n4)3 (n31 n4) identity matrix, 0 was a (n11
n2)3 (n31 n4) matrix of zeros, s2e ið Þ was the sum of residual
variance for the ith probe in both physiological stages and pi

was the probe-specific heteroskedasticity parameter. As
shown by Casellas and Varona (2008), pi5 0.5 accounted
for equal residual variances between treatments and
pi 6¼ 0.5 suggested within-probe (between treatments)
heteroskedasticity. Given the reduced number of replicates
within each physiological stage, a common residual variance
was assumed for both L and H sows.
This model was analyzed under a standard Bayesian

development with the following joint posterior probability:
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and the Bayesian likelihood was stated as multivariate
normal,
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The a priori distribution for the probe effects was
assumed:

p pj s
2
pj

���� �
�MVN 0; Inj

s2pj
� �

; j 2 1; 2; 3; 4½ �

where Inj
was a nj3 nj identity matrix and s2pj was the

variance component for pj. Scaled x22 priors with hyper-
parameters S25 0 and v522 were assumed for all variance
components s2pj, and flat priors were also assumed for m.
Given that we lacked a priori information about probe-specific
dispersion patterns in pigs, the prior distribution for p was
defined as a mixture of distributions involving a uniform dis-
tribution between 0 and 1, and null probability otherwise
(Casellas and Varona, 2008):

p pð Þ�
Ym
k¼ 1

1 if pk 2 0; 1½ � and 0 otherwise

Note that this prior distribution is the key point for further
testing of within-probe heteroskedasticity and covers all
possible values taken forpk with equal probability, following
Verdinelli and Wasserman (1995), Garcı́a-Cortés et al. (2001)
and Varona et al. (2001).

BF for testing within-probe heteroskedasticity
The BF is the basic tool for comparing models in the Bayesian
framework (Kass and Raftery, 1995). This factor provides
the ratio of the posterior probability of both competing
models without requiring the definition of the null and
alternative hypotheses. Differences in residual variance
between physiological stages were checked probe-by-probe
by applying the BF proposed by Casellas and Varona (2008).
This approach straightforwardly compares pi5 0.5 (within-
probe homogeneous residual variance for the ith probe,
within-probe heterogeneous residual variances for the
remaining probes; Model HOi) against pi 6¼ 0.5 (within-
probe heterogeneous residual variances for all probes;
Model HE). This BF tests probe-by-probe dispersion patterns,
although it does not inform about the best analytical model
for the joint inference of all probes (Casellas and Varona,
2008). The BF between Model HE and Model HOi (BFHE=HOi

)
was calculated from the Markov chain Monte Carlo sampler
output of Model HE, by averaging the full conditional den-
sities of each cycle at pi5 0.5 using the Rao–Blackwell
argument (Wang et al., 1994). Note that BFHE=HOi

4 1 shows
that Model HE is more suitable than Model HOi, revealing a
statistically relevant degree of heteroskedasticity in probe i.
On the other hand, within-probe homogeneous residual
variances are corroborated under BFHE=HOi

o 1. Following
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Garcı́a-Cortés et al. (2001) and Varona et al. (2001), the
posterior density p(pi5 0.5jy) suffices to obtain BFHE=HOi

,

BFHE=HOi
¼ p pi ¼ 0:5ð Þ

p pi ¼ 0:5 y
��� � ¼ 1

p pi ¼ 0:5 y
��� �

because p(pi5 0.5) was previously stated by p(p) at
p5 0.5.

Markov chain Monte Carlo sampling
A total of nine independent analyses were performed,
accounting for each within-tissue pairwise comparison
between physiological stages. For each analysis, autocorrelated
samples from the relevant marginal posterior distribution of all
unknowns in the model were obtained by Gibbs sampling
(Gelfand and Smith, 1990), with the exception of pi, which
required a Metropolis–Hastings step (Hastings, 1970). A single
chain with 500 000 elements was launched for each pairwise
comparison, and the first 50 000 samples were discarded as
burn-in. Sampling convergence was checked by visual inspec-
tion according to Raftery and Lewis (1992).

Correction for multiple testing
Following Kass and Raftery (1995), the posterior odds between
Model HE and Model HOi ðPOHE=HOi

Þ can be calculated

as follows:

POHE=HOi
¼ BFHE=HOi

� pHE

pHOi

where pHE was the a priori probability of Model HE and pHOi

was the a priori probability of Model HOi. POHE=HOi
could be

viewed as a weighted BF, which accounted for more realistic
a priori probabilities for both models under multiple testing.
In the standard development of the BF described above, we
assumed that the ratio between pHE and pHOi

(prior odds)
was 1 and the a priori probabilities for Model HE and Model
HOi were both 0.5 at each probe. This assumption provided
an a priori expected number of probes with heteroskedastic
dispersion pattern of 7676.5 in each analysis. To provide a
more realistic and conservative framework, and according to
dispersion-specific gene expression results reported by
Casellas and Varona (2008), we a priori assumed that only
one out of 100 probes could have heterogeneous residual
variances, applying a multiplicative correction factor of 1/99
to all BF. All BF provided in this study were corrected by
multiple testing.

Results and discussion

As highlighted by Wolfinger et al. (2001), inference in
microarray gene expression analyses is typically focused on

HEAT vs. 15d HEAT vs. 45d 45d vs. 15d

Figure 1 Plots of the pairwise distribution of log(BFHE=HOi
), s2e and p parameters in the uterus.

Variance heterogeneity in pig microarrays
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gene-specific differences between mathematical expecta-
tions of two (or more) groups of biological conditions.
However, discrepancies in gene expression could also be
characterized by other statistics of interest like dispersion
parameters (Bachtiary et al., 2006; Somel et al., 2006).
Despite the recent release of massive microarray platforms
for evaluating gene expression levels, dispersion-related
differential gene expression patterns were poorly investi-
gated in mammals and we lack prospective results in
domestic species of livestock. The recent development of a
specific BF approach to check for within-probe between-
groups heterogeneous residual variances in microarray
studies (Casellas and Varona, 2008) opened a new research
framework for gene expression analyses, allowing for
genome-wide screenings of dispersion-related differential
gene expression with minimum computational requirements.
We adopted this methodology to characterize the incidence
of dispersion-related differential gene expression in
sows, the first screening of this phenomenon in a livestock

species. Nevertheless, this must be viewed as one of the
multiple statistical approaches that can be used to unravel
dispersion-specific differential gene expression in livestock.
Indeed, this model can be easily adapted to account for tail-
area probability approaches (see Blasco (2005) for additional
details) or even equivalence testing (Morey and Rouder, 2011)
among others.
Taking the estimates from the analysis performed on

uterus samples as an example (Figure 1), our results can be
straightforwardly characterized by plotting the dispersion
pattern of the BF itself and the two main variables involved
in its parameterization, pi and s2e ið Þ. As expected, s2e ið Þ
estimates accumulated to the left boundary of the positive
parametric space (lower and upper rows, Figure 1), resulting
in a shaped exponential pattern with minimum incidence of
large variances (e.g. 1.4% (HEAT v. 15d) to 3.2% (45d v. 15d)
of s2e ið Þ estimates were .5) and without showing a clear
linkage with realized BFHE=HOi

(Figure 1, upper row). Con-
versely, pi estimates distributed across all the parametric

Table 2 Distribution of the number of probes (and percentage) for each analysis according to Jeffreys’ (1984) scale of evidence for Bayes factors

Bayes factor of Model HE against Model HOi (BFHE=HOi
)

BFHE=HOi
o 1 1p BFHE=HOi

p 3:16 3:16p BFHE=HOi
p 10 10p BFHE=HOi

p 31:62 3:162p BFHE=HOi
p 100 BFHE=HOi

X 100

Uterus
HEAT v. 15d 11 915 (77.6) 1200 (7.8) 845 (5.5) 578 (3.8) 354 (2.3) 461 (3.0)
HEAT v. 45d 13 058 (85.0) 1013 (6.6) 561 (3.7) 325 (2.1) 163 (1.1) 233 (1.5)
15d v. 45d 14 014 (91.2) 590 (3.8) 345 (2.2) 199 (1.3) 121 (0.8) 84 (0.5)

Ovary
HEAT v. 15d 14 714 (95.8) 329 (2.1) 141 (0.9) 83 (0.5) 46 (0.3) 40 (0.3)
HEAT v. 45d 14 644 (95.3) 378 (2.5) 172 (1.1) 83 (0.5) 44 (0.3) 32 (0.2)
15d v. 45d 14 917 (97.1) 235 (1.5) 128 (0.8) 38 (0.2) 22 (0.1) 13 (0.1)

Hypophysis
HEAT v. 15d 9613 (62.6) 3060 (19.9) 1631 (10.6) 643 (4.2) 212 (1.4) 194 (1.3)
HEAT v. 45d 14 767 (96.1) 352 (2.3) 147 (1.0) 54 (0.4) 24 (0.2) 9 (0.1)
15d v. 45d 14 590 (95.0) 482 (3.1) 158 (1.0) 69 (0.4) 36 (0.2) 18 (0.1)

Table 3 Distribution of the number (and percentage) of probes with mean-related differential expression on the dispersion-related categories
defined by the Bayes factor of Model HE against Model HOi (BFHE=HOi

)

Bayes factor of Model HE against Model HOi (BFHE=HOi
)

BFHE=HOi
o 1 1p BFHE=HOi

p 3:16 3:16p BFHE=HOi
p 10 10p BFHE=HOi

p 31:62 3:162p BFHE=HOi
p 100 BFHE=HOi

X 100

Uterus
HEAT v. 15d 2621/2682 (2.1/2.2) 18/21 (1.5/1.7) 6/4 (0.7/0.4) 8/10 (1.3/1.7) 2/6 (0.5/1.6) 5/2 (1.0/0.4)
HEAT v. 45d 240/381 (1.8/2.9) 17/26 (1.6/2.5) 4/11 (0.7/1.9) 4/5 (1.2/1.5) 1/5 (0.6/3.0) 1/5 (0.4/2.1)
15d v. 45d 168/146 (1.1/1.0) 6/4 (1.0/0.6) 5/5 (1.4/1.4) 1/0 (0.5/0) 0/0 (0/0) 1/0 (1.1/0)

Ovary
HEAT v. 15d 421/498 (2.8/3.3) 13/20 (3.9/6.0) 6/9 (4.2/6.3) 2/5 (2.4/6.0) 2/1 (4.3/2.1) 2/3 (5/7.5)
HEAT v. 45d 386/544 (2.6/3.7) 18/19 (4.7/5.0) 4/6 (2.3/3.4) 3/2 (3.6/2.4) 3/3 (6.8/6.8) 1/0 (3.1/0)
15d v. 45d 140/109 (0.9/0.7) 1/4 (0.4/1.7) 2/0 (1.5/0) 1/3 (2.6/7.8) 0/0 (0/0) 0/0 (0/0)

Hypophysis
HEAT v. 15d 16/20 (0.1/0.2) 10/11 (0.3/0.3) 2/2 (0.1/0.1) 0/1 (0/0.1) 1/1 (0.4/0.4) 0/0 (0/0)
HEAT v. 45d 68/59 (0.4/0.3) 1/1 (0.2/0.2) 0/2 (0/1.3) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0)
15d v. 45d 10/14 (0.0/0.0) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0)

1Comparison between lowly prolific sows.
2Comparison between highly prolific sows.
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space (i.e. from 0 to 1) and showed a clear linkage with
BFHE=HOi

. As previously reported by Casellas and Varona
(2008), BFHE=HOi

resulted in a very characteristic U-shaped
pattern when plotted against pi (Figure 1, medium row),
increasing BFHE=HOi

with extreme values of pi (i.e. pi tending
to 0 or 1) and decreasing with intermediate estimates of pi.
Both s2e ið Þ and pi gave us a detailed idea about the overall
dispersion pattern of gene expression within each tissue and
reproductive stage (Figure 1, lower row). Focusing on uterus,
HEAT v. 15d and HEAT v. 45d analyses provided a skewed
distribution of both s2e ið Þ and pi, with a higher incidence of
small pi estimates and suggesting an increase of the aver-
age s2e ið Þ with smaller pi. Both results indicated a smaller
residual variability in gene expression during heat when
compared with further gestational progress (i.e. 15d and
45d), which suggested a higher need for accurate genetic
regulation during this initial reproductive stage. The last
comparison (45d v. 15d) tended to show a higher incidence
of large pi values (i.e. closer to 1), which was indicative of a
smaller overall residual dispersion of gene expression at 15d
than at 45d. As a whole, these plots showed a regular
temporal trend across heat and gestation in sows, suggest-
ing that the variability of the overall gene expression
increased with time, at least from heat to 45d of gestation.
Very similar plots and the same overall trends were observed
in both ovary and hypophysis tissues (results not shown).
As shown in Table 2, most of the analyzed probes did not

reveal relevant departures from the null hypothesis of
homogeneous residual variance (BFHE=HOi

o 1), ranging
between 77.6% and 91.2% of the total in uterus, 95.8% and
97.1% in ovary and 62.6% and 96.1% in hypophysis.
Nevertheless, the main result was not these non-heterogeneous
probes but the 2.9% to 37.4% of probes providing statistical
evidence of dispersion-related differential gene expression.
Note that within-probe heterogeneous residual variances
were previously reported when comparing great ape tissue
samples (Casellas and Varona, 2008), although our results
contribute the first evidence of within-probe hetero-
skedasticity in a domestic species of mammals. Following
Jeffreys’ (1984) scale of evidence for BFs, 1.5% to 19.9%
of probes provided almost irrelevant evidence favoring
Model HE (1p BFHE=HOi

p 3:16), whereas substantial (0.8%
to 10.6%; 3:16p BFHE=HOi

p 10), strong (0.2% to 4.2%;
10p BFHE=HOi

p 31:62), very strong (0.1% to 2.3%;
31:62p BFHE=HOi

o 100) and decisive (0.1% to 3.0%;
BFHE=HOi

X 100) results must be highlighted in our study.
These estimates reported a remarkable incidence of dispersion-
related differential gene expression in sows, which were
revealed in all three biological tissues included in our study (i.e.
ovary, uterus and hypophysis) and across all the reproductive
stages (i.e. HEAT, 15d and 45d of pregnancy; Table 1).
One could hypothesize that this between-groups hetero-

geneity of the residual variance of gene expression could be
linked to scale effects because of differential gene expres-
sions in terms of mathematical expectations. Nevertheless,
this hypothesis was discarded by the results shown
in Table 3. Only 0% to 7.5% of the genes with larger than

one BFHE=HOi
for heterogeneous residual variances also

revealed relevant differential gene expressions in terms of
mathematical expectations at a posterior probability of 95%
(see Casellas et al. (2008) for additional details on the cal-
culation of this posterior probability). These results agreed
with Casellas and Varona (2008) and, although they cannot
be extrapolated to all microarray experiments, they suggest
that heterogeneous residual patterns could be a biological
phenomenon of special interest in further analyses of gene
expression data in the swine species, independent from
scale-effect disturbances.

Figure 2 Venn diagrams accounting for the number of highly heteroskedastic
probes (BFHE=HOi

4 100) in uterus (a), ovary (b) and hypophysis (c).
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Venn diagrams provided evidence of a higher incidence of
heterogenically expressed genes (with BFHE=HOi

X 100) in
uterus than in ovary or hypophysis (Figure 2), although only
one gene in uterus (RPS3A; Table 4) revealed decisive evi-
dence of heteroskedasticity in all three pairwise comparisons
between reproductive stages. This gene, which encodes for
the 40S ribosomal protein S3a of the small ribosomal subunit
and has been linked to apoptosis and cell differentiation
phenomena (Naora and Naora, 1999), showed greater gene
expression variability at 15d than at 45d and also at 45d
compared with HEAT. Regarding the remaining genes with
decisive evidence of heteroskedasticity or homoskedasticity
in all three pairwise comparisons (Table 4), they were linked
to multiple biological processes and metabolic pathways,
suggesting that dispersion-specific differential gene expres-
sion could be widely distributed across the whole genome.
Although the main target of this research was not focused
on the identification of specific heteroskedastic genes but on
checking for the suitability of this phenomenon, and its inci-
dence in the whole genome of swine, probes shown in Table 4
represent a very promising starting point for identifying the

genetic mechanisms involved in the regulation of gene
transcription on a dispersion basis. Moreover, commonly
used housekeeping genes such as GAPDH, HMBS, RPL32,
SDHA and YWHAZ (Vandesompele et al., 2002) were also
included in the analysis and none of them showed statisti-
cally relevant dispersion-specific differential gene expres-
sion; this provided additional confidence about differentially
expressed genes shown in Table 4.
As recently demonstrated at a gene-specific level (Lo and

Gottardo, 2007), an accurate modeling of residual dispersion
patterns allows for a more realistic fit of gene expression
data, reducing the rate of false positives when differential
gene expression is characterized in terms of mathematical
expectations or their differences (Kendziorski et al., 2003;
Newton et al., 2004; Lo and Gottardo, 2007). Moreover, the
analysis of heterogeneous residual dispersion patterns
opens up promising research possibilities within the gene
expression framework, where heterogeneity in residual
variability could be viewed as an alternative and plausible
characterization of differential expression patterns. The current
study provided the first evidence of massive heteroskedasticity

Table 4 Summary of probes with decisive evidence of heterogeneous (BFHE=HOi
4 100) and/or homogeneous (BFHE=HOi

o 0:01) residual variances in
all three pairwise comparisons

HEAT v. 15d HEAT v. 45d 15d v. 45d

Gene Tissue pi BFHE=HOi
pi BFHE=HOi

pi BFHE=HOi

(HEAT5 15d) , 45d1

ARPP21 Ut 0.47 93 1023 0.01 2558.7 0.02 360.0
APOA2 Ut 0.47 93 1023 0.02 1078.0 0.03 108.1
ASB11 Ut 0.52 83 1023 0.01 2375.4 0.01 749.1
BPI Ut 0.54 13 1022 0.00 5262.7 0.01 1469.7
CPB2 Ut 0.51 93 1023 0.02 498.4 0.02 127.5
FDX1 Ut 0.54 93 1023 0.01 1338.2 0.02 491.1
C7orf45 Ut 0.55 93 1023 0.01 1413.6 0.01 742.9
SLC16A12 Ut 0.56 93 1023 0.02 659.8 0.01 438.1
PFKM Ov 0.52 93 1023 0.99 855.3 0.98 361.9
C5orf23 Ut 0.53 93 1023 0.03 335.2 0.03 132.8

HEAT , (15d5 45d)2

B3GAT2 Ut 0.03 210.2 0.04 132.2 0.51 93 1023

GALNT7 Ut 0.03 161.3 0.02 298.4 0.43 83 1023

GIT1 Ut 0.03 233.9 0.04 117.5 0.52 93 1023

MBNL1 Ut 0.02 698.0 0.02 304.3 0.50 73 1023

C5orf32 Ut 0.01 6068.0 0.02 316.4 0.56 83 1023

TMEM123 Ut 0.02 891.6 0.03 372.8 0.55 93 1023

TMEM45B Ut 0.01 12 557.7 0.00 14 264.2 0.41 93 1023

HKDC1 Ov 0.02 1009.9 0.03 200.7 0.58 93 1023

SERPINB7 Ut 0.02 514.4 0.02 203.4 0.51 73 1023

SLC16A1 Ut 0.03 190.1 0.02 373.4 0.41 83 1023

SYT13 Ut 0.01 1555.7 0.03 346.9 0.58 13 1022

TPP2 Ut 0.03 204.1 0.03 207.1 0.48 83 1023

HEAT , (15d. 45d)3

RPS3A Ut 0.00 25 529.8 0.20 143.8 0.74 137.738

Ut5 uterus; Ov5 ovary.
Note that 118 (uterus) and 161 (ovary) probes with homogeneous residual variances (BFHE=HOi

o 0:01) across all tissues have been omitted.
1Residual variances were homogeneous between HEAT and 15d, but were heterogeneous between these two groups and 45d.
2Residual variances were homogeneous between 15d and 45d, but were heterogeneous between these two groups and HEAT.
3Residual variances were heterogeneous across all groups, greater in 15d than in 45d, and greater in 45d than in HEAT.
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for gene expression in the swine species, a phenomenon that
must be accurately considered in further studies in order to
provide a detailed characterization of the genetic architecture
and regulation of domestic pigs. Moreover, and if confirmed in
future analyses, the list of genes provided in Table 4 must be
considered as an appealing starting point for a deeper under-
standing of the genetic pathways involved in sow reproduction,
and may reveal dispersion-related regulatory mechanisms.
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Varona L, Garcı́a-Cortés LA and Pérez-Enciso M 2001. Bayes factors for
detection of quantitative trait loci. Genetics, Selection, Evolution 33, 133–152.

Verdinelli I and Wasserman L 1995. Computing Bayes factors using a
generalization of the savage-dickey density ratio. Journal of the American
Statistical Association 90, 614–618.

Wang CS, Rutledge JJ and Gianola D 1994. Bayesian-analysis of mixed linear-
models via Gibbs sampling with an application to litter size in Iberian pigs.
Genetics, Selection, Evolution 26, 91–115.

Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari
C and Paules RS 2001. Assessing gene significance from cDNA microarray
expression data via mixed models. Journal of Computational Biology 8,
625–637.

Variance heterogeneity in pig microarrays

385


