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Highlights

 L. monocytogenes was reduced by 1-log unit in presence of P. graminis CPA-7

 No effect of CPA-7 was observed against S. enterica

 SSC and TA of fresh-cut pears was not negatively affected by CPA-7 nor CaCl2 treatment

 Ethanol and acetaldehyde increased during shelf-life regardless of CPA-7 presence

 CPA-7 affected the volatile profile of fresh-cut pears
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14 ABSTRACT

15 The application of microorganisms to control the growth of foodborne pathogens is an 

16 alternative to the use of chemical additives. In this work, Pseudomonas graminis CPA-7 

17 was tested as a biocontrol agent against Salmonella enterica and Listeria 

18 monocytogenes on fresh-cut pear under conditions that simulate its commercial 

19 application at 5 ± 1 °C (under a modified atmosphere and antioxidant solution). The 

20 quality of the fresh-cut fruit, including the ethanol and acetaldehyde contents and the 

21 volatile profile, was determined. After the storage period, the L. monocytogenes 

22 population was reduced by 1-log unit by the presence of CPA-7; however, CPA-7 was 

23 not found to have antagonistic activity against S. enterica. The fruit quality (total soluble 

24 solids content and titratable acidity) was not negatively affected by CPA-7. The ethanol 

25 and acetaldehyde contents increased during the shelf-life of the fruit regardless of the 

26 presence of CPA-7. Some volatile compounds were key factors for discriminating 

27 samples from the two groups (the control group and the group that was inoculated with 

28 CPA-7). Some components are common in the volatile profile of pear (methyl acetate, 

29 3-methylbutyl acetate, 1-butanol, 1-hexanol, and hexanal), and thus increases in their 

30 contents could enhance consumers flavour perception. 

31

32 Keywords: Listeria, Salmonella, ethanol, acetaldehyde, antagonist
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34 1. Introduction

35 The consumption of fruits and vegetables provides us with a large amount of 

36 micronutrients; therefore, they are basic components of a healthy diet. Many studies 

37 have reported that the intake of fruits and vegetables reduces the risk of mortality due to 

38 cancer and cardiovascular diseases (Wang et al., 2014). Therefore, the production of 

39 fresh-cut fruits and vegetables is increasing because of their health benefits as well as 

40 their convenience for consumers. 

41 Minimal fruit and vegetable processing consists of washing, trimming, peeling, cutting or 

42 shredding, sanitizing and packing. However, these operations do not guarantee the total 

43 elimination of spoilage and foodborne pathogenic microorganisms that could be present 

44 in the produce. Several outbreaks associated with the consumption of fresh-cut produce 

45 have been reported in recent years (CDC, 2016). Chemical sanitizers and additives are 

46 used to preserve fresh-cut produce; however, consumer’s concerns regarding these 

47 substances in food has promoted the development of alternative techniques.

48 One such method is biopreservation or biological control. Non-pathogenic 

49 microorganisms have been proposed as biocontrol agents. They control the growth of 

50 spoilage and pathogenic microorganisms by competing for nutrients or physical space 

51 or by producing substances that negatively affect pathogens (Parish et al., 2003). 

52 Moreover, some lactic acid bacteria (LAB) have also been studied as biocontrol agents. 

53 For example, Lactobacillus rhamnosus GG has been reported to control the growth of 

54 foodborne pathogens on fresh-cut apple (Alegre et al., 2011) and on fresh-cut pear 

55 (Iglesias et al., 2017) and Lactobacillus plantarum CIT3 on minimally processed apple 

56 (Siroli et al., 2015b). The native microbiota present in fruits and vegetables have also 

57 shown antagonistic activity against foodborne pathogens. Leverentz et al. (2006) 

58 reported that Candida spp., Discosphaerina fagi, Gluconobacter assai and 

59 Metschnikowia pulcherrima controlled L. monocytogenes and Salmonella growth at 10 

60 and 25 °C on fresh-cut apple. Trias et al. (2008) showed that some Leuconostoc strains 
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61 have bactericidal effects against L. monocytogenes and reduced the growth of 

62 Escherichia coli and Salmonella typhimurium on fresh-cut apple at 25 °C. Pseudomonas 

63 graminis CPA-7, isolated from the surface of an apple, has shown activity against 

64 foodborne pathogens on fresh-cut apple and peach (Alegre et al., 2013b) and on fresh-

65 cut apple and melon under conditions simulating commercial applications (Abadias et 

66 al., 2014; Alegre et al., 2013a). Recently, Iglesias et al. (2018) demonstrated that this 

67 biocontrol agent is also effective on fresh-cut pear. Among the many requirements, 

68 biopreservation cultures should not impact the quality of the fresh-cut fruit through 

69 possible metabolic reactions during bacterial growth.

70 Maintaining the sensorial qualities of minimally processed fruit after processing and 

71 during the chain of distribution is very difficult. The shelf-life of cut produce is very limited 

72 due to browning of the flesh and the loss of flavour (Conway et al., 2002; Toivonen, 2006; 

73 Toivonen and Delaquis, 2006). Some factors including variety, ripeness stage, and the 

74 atmosphere and temperature of storage affect shelf-life during postharvest storage 

75 following processing. Modified atmosphere packaging (MAP) in combination with 

76 refrigeration temperatures is used to preserve fresh-cut produce. Low O2 and high CO2 

77 can be used to preserve the quality of minimally processed fruit because they inhibit the 

78 bioreactions in fruit tissue that may lead to physiological decay (Rosen and Kader, 1989; 

79 Sapers and Miller, 1998). However, that gas composition may initiate fermentative 

80 pathways that release metabolites such as ethanol that cause off-flavours (Soliva-

81 Fortuny et al., 2002). Moreover, it is known that although a high CO2 level can inhibit 

82 aerobic spoilage microorganisms, it can also allow pathogen growth (Rodriguez-Aguilera 

83 et al., 2009). Therefore, it is necessary to maintain an O2 concentration that is sufficiently 

84 low but also over the fermentation threshold (Lakakul et al., 1999).

85 Concerning firmness, postharvest calcium dips for whole fruit have been demonstrated 

86 to preserve firmness, cell wall structure (Glenn and Poovaiah, 1990), nutritional quality 

87 (Goldberg, 1984) and fruit flavour (Ortiz et al., 2009). Similarly, combinations of calcium 
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88 treatment (0.5-4 %) with packaging under modified atmospheres and low storage 

89 temperature (< 5 °C) are generally effective for extending the shelf-lives of minimally 

90 processed products. 

91 The aim of this study was to evaluate the antagonistic effect of CPA-7 against Salmonella 

92 and L. monocytogenes on fresh-cut pear treated with CaCl2 after harvest under 

93 conditions simulating commercial applications (under MAP and in presence of an 

94 antioxidant solution) at 5 ± 1 °C. In addition, the effect of CPA-7 on some quality 

95 parameters, including ethanol and acetaldehyde contents and the volatile profile, were 

96 evaluated throughout storage. 

97

98
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99 2. Materials and Methods

100 2.1. Bacterial strains and inoculum preparation

101 As pathogen microorganisms, five serovars of Salmonella enterica subsp. enterica were 

102 used, namely, Agona (ATCC BAA-707), Michigan (ATCC BAA-709), Montevideo (ATCC 

103 BAA-710), Gaminara (ATCC BAA-711) and Enteritidis (CECT-4300), along with five 

104 serovars of Listeria monocytogenes, namely, serovar 1a (CECT 4031), serovar 3a 

105 (CECT 933); serovar 4d (CECT 940), serovar 4b (CECT 4032) and serovar 1/2a, which 

106 had previously been isolated in our laboratory from a fresh-cut lettuce sample (Abadias 

107 et al., 2008). S. enterica and L. monocytogenes strains were grown individually in 

108 tryptone soy broth (TSB, Biokar Diagnostics, France) medium and in TSB supplemented 

109 with 6 g L-1 of yeast extract (TSBYE), respectively, for 20-24 h at 37 ± 1 °C. 

110 Pseudomonas graminis strain CPA-7 (deposit number CBS 136973, Centraalbureau 

111 voor Schimmelcultures, CBS, Utrech, The Netherlands), isolated in our lab from the 

112 surface of an apple (Alegre et al., 2013b), was used as antagonist. It was grown in TSB 

113 for 20-24 h at 25 ± 1 °C. Bacterial cells were harvested by centrifugation at 9800 x g for 

114 10 min at 10 °C. Afterwards, the pathogen cells were resuspended in saline solution (SS; 

115 8.5 g L-1 NaCl), and the CPA-7 cells were suspended in sterile distilled water. A single 

116 suspension of the five S. enterica serovars and the L. monocytogenes serovars was 

117 produced by mixing equal volumes of each concentrated suspension.

118 To inoculate the fruit, an aliquot of each of the concentrated bacterial suspensions was 

119 added to an antioxidant solution (2 % ascorbic acid + 2 % sodium citrate + 1 % CaCl2), 

120 which was selected based on previous studies (Iglesias et al., 2018), to obtain solutions 

121 of approximately 105 cfu mL-1 in the case of S. enterica and L. monocytogenes and 

122 107 cfu mL-1 for CPA-7. Inoculum concentrations were checked by plating appropriate 

123 dilutions onto XLD (xylose-lysine-deoxycholate Agar, Biokar Diagnostics, France) for 

124 S. enterica, onto Palcam agar (Palcam Agar Base with selective supplementation, Biokar 

125 Diagnostics, France) for L. monocytogenes, and onto tryptone soy agar (TSA, Biokar 
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126 Diagnostics, France) for CPA-7. The plates were incubated at 37 ± 1 °C for 24 for 

127 S. enterica, at 37 ± 1 °C 48 h for L. monocytogenes, and at 30 ± 1 °C for 48 h for CPA-

128 7. 

129 2.2. Fruit processing

130  ‘Conference’ pears (Pyrus communis L. cv. Conference) were used in this study. After 

131 harvest, the pears were divided in two lots. Whole fruits of lot 1 were dipped in water at 

132 25 °C for 5 min (control group), and whole fruits of lot 2 were dipped in a solution 

133 containing 10 g L-1 CaCl2 at 25 °C for 5 min. Afterwards, the pears of both lots were 

134 stored at 0 ± 1 °C for 5 months in a controlled atmosphere (2 kPa O2 and 1 kPa CO2) 

135 leading up to the experiment. 

136 After this storage period, the pears were stored at 20 °C until they reached the optimum 

137 ripeness stage for processing (44 ± 3.2 N) (Soliva-Fortuny et al., 2004). Prior to the 

138 experimental studies, the pears were sanitized by immersion into a 0.1 g L-1 NaOCl 

139 solution adjusted to pH 6.5 using citric acid and then rinsed and dried. After that, the 

140 pears were peeled and cut into 10 wedges using a handheld apple corer and slicer.

141 2.3. Fruit inoculation and packaging

142 To carry out the experiment, the following treatments were prepared: (a) control: 

143 antioxidant solution; (b) Sal + Lm: antioxidant solution inoculated with S. enterica and 

144 L. monocytogenes at 105 cfu mL-1; (c) CPA-7: antioxidant solution with 107 cfu mL-1 CPA-

145 7 cells; and (d) Sal + Lm + CPA-7: antioxidant solution containing S. enterica and 

146 L. monocytogenes (105 cfu mL-1) and CPA-7 (107 cfu mL-1). The pear wedges were 

147 dipped into these solutions (1:2 w/v) for 2 min in an orbital shaker at 150 rpm on an orbital 

148 shaker. After that, the fresh-cut pears were allowed to dry open to air at room 

149 temperature. Approximately 120 ± 5 g of pear wedges were placed in 400-mL 

150 polyethylene terephthalate ShelfMaster™ Pronto™ trays (PlusPack, Denmark) and 

151 sealed with peelable plastic with an O2 permeability of 180 cm3 m-2 day-1 atm-1 at 23 °C 
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152 (film PET OLAF interior and OPP exterior with a line of holes of 60 - 80 µm each and 75 

153 mm apart from each other). The film used in this study was selected based on the results 

154 of previous studies according to the quality parameters of the fresh-cut pear and the 

155 survival and efficacy of CPA-7 (Iglesias et al., 2018).

156 The trays of fresh-cut pears were stored at 5 ± 1 °C. Microorganism populations were 

157 determined the day of inoculation and after 2, 6 and 9 days of storage in the three sample 

158 trays. The S. enterica and L. monocytogenes populations were evaluated in treatments 

159 (b) and (d), and CPA-7 was evaluated in treatment (c). Total aerobic mesophilic counts 

160 (TAM) were determined in control samples (a). For analysis, 10 g of pear from each tray 

161 was mixed with 90 mL of buffered peptone water (BPW, Oxoid, LTD, Basingstoke, 

162 Hampshire, England) in a sterile bag and homogenized in a masticator (IUL Instruments, 

163 Barcelona, Spain) set at 8.5 strokes s-1 for 90 s. Serial dilutions were prepared with saline 

164 peptone (SP; 8.5 g L-1 NaCl and 1 g L-1 peptone), and the solutions were plated in 

165 duplicate onto Palcam (L. monocytogenes), XLD (S. enterica) and on Plate Count Agar 

166 (Biokar Diagnostics, France). The agar plates were incubated at 37 ± 1 °C for 24 h for 

167 S. enterica, at 37 ± 1 °C for 48 h for L. monocytogenes, at 30 ± 1 °C for 48 h for CPA-7 

168 and at 30 ± 1 °C for 72 h for TAM.

169 2.5. Determination of the physical and chemical parameters

170 To determine if the presence of CPA-7 impacts the quality of the fresh-cut pear, quality 

171 parameters were measured in treatments (a) and (c) (without foodborne pathogens). 

172 Three determinations (one per each tray) per treatment were made.

173 2.5.1. Headspace gas composition

174 Before each microbial analysis at each sampling time, the O2 and CO2 concentrations 

175 inside the trays were measured using a handheld gas analyser (CheckPoint O2/CO2, PBI 

176 Dansensor, Denmark). An adhesive septum was attached to the film, and a needle was 

177 used to determine the gas composition. The results are expressed as kPa.
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178 2.5.2. Measurement of soluble solids content and titratable acidity

179 At each sampling time, the soluble solids content (SSC) in juice extracted by crushing 

180 the pear wedges in a blender was measured at 20 °C with a handheld refractometer 

181 (Atago Co. Ltd., Tokyo, Japan). The results are expressed as %.

182 To measure the titratable acidity (TA), three measurements per treatment were made at 

183 each sampling point. Ten millilitres of pear juice was diluted with 10 mL of distilled water, 

184 and the solution was titrated with 0.1 N NaOH up to pH 8.2. The results were calculated 

185 as g of malic acid per litre of solution. 

186 2.5.3. Ethanol and acetaldehyde headspace concentrations

187 The contents of ethanol and acetaldehyde were determined according to the protocol 

188 described by Echeverría et al. (2004) with slight modifications. These compounds were 

189 extracted from the same juice used to determine SSC and TA. Juice samples (5 mL) 

190 were stored at −20 °C until analysis. Samples were transferred to a 10-mL test tube with 

191 a screw cap and incubated in a water bath at 60 °C. After 60 min, a 1 mL samples of the 

192 headspace gas was taken with a syringe and injected into an Agilent Technologies 

193 6890N gas chromatograph (GC) for the determination of both the acetaldehyde and 

194 ethanol concentrations. To do this, the gas chromatograph was equipped with a flame 

195 ionisation detector (FID) and a column (2 m × 2 mm i.d.) containing 5 % Carbowax on 

196 60/80 Carbopack (Supelco, Bellefonte, PA, USA). The temperature of the injector, 

197 detector and oven were 180, 220 and 80 °C, respectively. Tissue concentrations were 

198 calculated using ethanol and acetaldehyde calibration curves prepared by measuring the 

199 headspace of Milli-Q water spiked with a known amount of ethanol and acetaldehyde at 

200 increasing concentrations and are expressed as µL L-1. 

201 2.5.4. Determination of the volatile compounds
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202 Headspace solid-phase microextraction (HS-SPME) was used for the extraction and to 

203 determine the concentrations of the volatile compounds. SPME fibres coated with a 65-

204 µm layer of polydimethylsiloxane–divinylbenzene (65 µm PDMS/DVB; Supelco Co., 

205 Bellefonte, PA, USA) were used. Fibres were activated before sampling according to the 

206 manufacturer’s instructions. 

207 Four pieces of fruit per tray (n = 3) for each treatment were cut in small pieces, frozen 

208 with liquid N2, crushed, and immediately transferred to -80 °C storage until the volatile 

209 components could be analysed. 

210 For each extraction, 4 g of the homogenized crushed pulp was placed into a 20-mL 

211 screw-cap vial containing 0.5 g of NaCl to facilitate the release of volatile compounds. 

212 Prior to sealing the vial, 1 µL of 0.086 mg L-1 butyl benzene/diethyl ether was added as 

213 an internal standard, and the solution was mixed with a glass rod. A magnetic stirrer was 

214 added to each vial, and the vials were placed into a constant-temperature water bath at 

215 60 °C with stirring. Samples were equilibrated for 20 min, and then the SPME fibres were 

216 exposed to the head space of the sample for 30 min to adsorb the analytes according to 

217 the procedure described by Qin et al. (2012). The volatile compounds were subsequently 

218 desorbed over 10 min at 240 °C into the splitless injection port of the chromatograph. 

219 The volatile constituents were identified and quantified with an HP 5890A gas 

220 chromatograph with a flame ionization detector equipped with a capillary column with 

221 cross-linked free fatty acids as the stationary phase (FFAP; 50 m  0.2 mm  0.33 µm). 

222 Helium was used as the carrier gas at a constant flow of 1.0 mL min-1. The injector and 

223 detector temperatures were 240 °C. The oven temperature programme was 40 °C for 1 

224 min, increasing at 2.5 °C min-1 to 115 °C, then increasing at 8 °C min-1 to 225 °C and 

225 holding for 15 min. Compounds were identified by comparing their respective retention 

226 index with those of standards. All of the standards for the volatile compounds studied in 

227 this work were analytical grade or the highest quality available. Quantification was 
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228 performed using individual calibration curves for each identified compound. The 

229 concentrations of volatile compounds were expressed as ng g-1.

230 Compound identification was performed on an Agilent 6890N gas chromatograph/mass 

231 spectrometer (Agilent Technologies, Inc.) using the same capillary column as was used 

232 in the GC analyses. Mass spectra were obtained by electron impact ionization at 70 eV. 

233 Helium was used as the carrier gas, and the same temperature gradient programme 

234 described previously was used for MS acquisition. Spectrometric data were recorded 

235 (Hewlett-Packard 3398 GC Chemstation) and compared with those from the original 

236 NIST HP59943C library mass spectra. 

237 2.6. Statistical analysis 

238 Prior to ANOVA, cfu g-1 data were converted to log10 cfu g-1. Other data were not 

239 converted. Data were analysed using general linear model analysis with JMP®8 software 

240 (JMP®8, SAS Institute, Cary, NC, USA). After analysis of variance (ANOVA), significant 

241 differences between treatments for each sampling time were analysed by Student’s t test 

242 or Tukey’s test at a significance level of P < 0.05. 

243 Unscrambler version 9.1.2. Software (CAMO, 2004) was used to develop a partial least 

244 square regression (PLSR) model. The PLSR model was used as a predictive method to 

245 relate the CPA-7 population (Y) to a set of explanatory variables (X), which include the 

246 volatile compound emissions and O2 and CO2 concentrations. As a pretreatment, the 

247 data were centred and weighted using the inverse of the standard deviation of each 

248 variable in order to avoid the influence of the different scales used for the variables 

249 (Martens and Naes, 1989). A full cross validation was run as a validation procedure. 
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250 3. Results

251 3.1. Population of microorganisms on fresh-cut pear stored at 5 °C

252 Initial S. enterica populations (Fig. 1A) were approximately 3.40 log cfu g-1 regardless 

253 CaCl2 treatment and the presence of CPA-7. The S. enterica population decreased 

254 throughout the storage time (9 days) by more than 0.5-log units, and significant 

255 differences were observed between the initial and final values. Neither CPA-7 nor CaCl2 

256 postharvest treatment were found to have an effect against S. enterica under the 

257 conditions tested.

258 The initial populations of L. monocytogenes were between 2.80 and 3.00-log units after 

259 the inoculation of the pear wedges (Fig. 1B). When pears treated with CPA-7 but 

260 untreated or treated with CaCl2 were compared, significant differences in the population 

261 were reported after 2 and 6 days of storage for both treatments (b and d). The 

262 populations of L. monocytogenes on fresh-cut pear and pear untreated with CPA-7 

263 increased during the storage time and reached similar values (5.62 ± 0.11 log cfu g-1 on 

264 CaCl2-treated pear and 5.65 ± 0.15 log cfu g-1 on CaCl2-untreated pear wedges). On 

265 pear wedges treated with CPA-7, the final L. monocytogenes population was not 

266 influenced by the CaCl2 treatment and reached values of 4.71 ± 0.22 log cfu g-1 on pear 

267 wedges treated with CaCl2 and 4.88 ± 0.21 log cfu g-1 on untreated pear wedges. CPA-

268 7 significantly reduced (approximately 1-log unit) the population of L. monocytogenes 

269 after 9 days of storage at 5 ± 1 °C.

270 Regardless of the postharvest CaCl2 treatment, initial CPA-7 populations (treatment c) 

271 (Fig. 1C) were the same (5.59 ± 0.06 and 5.54 ± 0.06 log cfu g-1 on pear wedges 

272 untreated and treated with CaCl2, respectively). Both populations increased after 9 days 

273 of storage and reached 6.61 ± 0.03 and 7.09 ± 0.05 log cfu g-1 on pear wedges untreated 

274 and treated with CaCl2, respectively. Populations on pear wedges treated with CaCl2 

275 increased faster than populations on fresh-cut pear not treated with CaCl2. Significant 
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276 differences were found at 2 and 9 days of storage. Regardless of the CaCl2 postharvest 

277 treatment, the population of TAM in pear wedges not treated with CPA-7 did not exceed 

278 3.50 log cfu g-1 during the experiment (data not shown).

279 3.2. Headspace gas concentration

280 The O2 concentration decreased from 21.0 kPa to between 12.6 and 14.6 kPa after 9 

281 days of storage (Table 1), and there were no significant differences from the treatments 

282 at any of the tested times. The CO2 concentration increased throughout the storage 

283 period until it reached values from 7.8-9.7 kPa. Except at day 2, no significant effects of 

284 CaCl2 and CPA-7 treatments were found.

285 3.3. Soluble solids content (SSC) and titratable acidity (TA)

286 The SSC ranged from 13.0 to 14.8 % during the assay (Table 2). The SSC values of 

287 postharvest CaCl2-treated (CaControl and CaCPA-7) pears were higher than those of 

288 the CPA-7-treated pears. In general, the SSCs were also significantly lower for CPA-7-

289 treated fresh-cut pears. 

290 There were not significant differences in the TA prior to the different treatments (Table 

291 2). After 2, 6 and 9 days of storage, the TA values of the CaCl2-untreated pear samples 

292 (Control and CPA-7) were similar. There were no significant differences in the TA due to 

293 the presence of CPA-7 in the CaCl2-treated pears (CaControl and CaCPA-7). The TA 

294 was only influenced by CPA-7 after 9 days of storage in CaCl2-untreated pears; the TA 

295 value was significantly lower (1.27 g L-1) for fresh-cut pears treated with CPA-7 than for 

296 CPA-7-untreated ones (1.70 g L-1). At the end of the storage period, each TA value was 

297 significantly lower than the initial value for all treatments. 

298 3.4. Ethanol and acetaldehyde concentrations

299 The initial concentrations of ethanol were between 40.8 and 70.6 mL L-1, and no 

300 significant differences were observed between treatments (Fig. 2A). After 6 days of 
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301 storage, the ethanol concentration was significantly higher in the CaCl2-treated pear 

302 samples without CPA-7 (Ca Control, 175.2 mL L-1) than in other treatments. The ethanol 

303 concentrations in the fresh-cut pears significantly increased (by a factor of approximately 

304 two) during the storage period in all treatments regardless of the presence of CPA-7. 

305 Thus, the increase could not be attributed to the biopreservation culture. 

306 The initial concentration of acetaldehyde was between 3.1 and 4.3 mL L-1 (Fig. 2B). The 

307 acetaldehyde concentration increased throughout storage, reached its maximum levels 

308 after 6 days, and then remained constant. No significant differences were observed 

309 between treatments at the end of the storage.

310 3.5. Volatile compound emissions 

311 Tables 3 and 4 show the mean concentrations of the volatile compounds emitted by the 

312 pear wedges on the day of the assay (0 days) and after 2 and 6 days of storage at 5 ± 

313 1 °C. A total of 43 compounds (25 esters, 10 alcohols, 4 aldehydes, 1 terpene, 2 ketones 

314 and 1 acid) were identified and quantified in the volatile fraction emitted by minimally 

315 processed fruit. Differences in the volatile profiles were found both before and after cold 

316 storage as a function of the postharvest CaCl2 treatment. Two esters (hexyl butanoate 

317 and hexyl 2-methylbutanoate) and one ketone (6-methyl-5-hepten-2-one) were not 

318 detected in the volatile profile of the pears treated with calcium chloride (Table 3). 

319 In pears treated with CaCl2 after harvest (Table 3), the storage period and inoculation 

320 with CPA-7 influenced the contents of individual volatile compounds. Thus, butyl 2-

321 methylbutanoate and ethyl hexanoate were detected for the first time after 6 days at 5 

322 °C.

323 Different results were obtained in pears untreated with CaCl2 (Table 4); four esters (ethyl 

324 2-methylbutanoate, 2-methylbutyl-2-methylbutanoate, pentyl-2-methylbutanoate, and 

325 ethyl hexanoate) were detected for the first time after 2 days at 5 °C, and 1-pentanol was 

326 quantified for the first time after 6 days in CPA-7-inoculated samples.
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327 Throughout the cold storage period, the effects of inoculation with CPA-7 on the volatiles 

328 profile was more important in pears that had not been treated with calcium chloride after 

329 harvest. Thus, in this case, minimally processed pears showed higher concentrations of 

330 16 volatile compounds (8 esters, 4 alcohols, 3 aldehydes and one terpene) than samples 

331 not treated with CPA-7 (Table 4). In contrast, in pear wedges treated with CaCl2 and 

332 inoculated with CPA-7 (Table 3) only 3 esters and 1 alcohol (3-methyl -2-butanol) 

333 increased significantly after 2 and 6 days at 5 °C.

334 After 6 days of storage at 5 °C, the CaCl2-treated pear wedges inoculated with CPA-7 

335 showed higher concentrations in 6 of the 43 volatile compounds (16 %) in contrast to the 

336 32 volatile compounds that showed higher concentration (74 %) in the non-inoculated 

337 CPA-7 samples (Table 3). This difference was mainly due to lower concentrations of 

338 aliphatic esters (except methyl and ethyl acetates, ethyl 2-methylbutanoate and butyl 

339 butanoate), alcohols (except 3-methyl-2-butanol), aldehydes, α-farnesene and acetic 

340 acid than in the samples not treated with CPA-7. Instead, after 6 days of cold storage at 

341 5°C, the CaCl2-untreated and CPA-7-treated minimally processed pear samples emitted 

342 higher amounts of 51 % of the volatile compounds in comparison to 19 % of the 

343 compounds in samples not inoculated with CPA-7 (Table 4). This result was due to 

344 higher ester concentrations (except ethyl, butyl and hexyl acetates, ethyl 2-

345 methylbutanoate and pentyl 3-methylbutanoate), alcohols (except ethanol, 3-methyl-2-

346 butanol and 1-pentanol), aldehydes (except acetaldehyde), α-farnesene and acetic acid 

347 of CPA-7 samples in comparison to the pear wedges not treated with CPA-7. 

348 A partial least square regression (PLSR) model was developed to evaluate possible 

349 correlations between the CPA-7 population (Y variable) and a set of potentially 

350 explanatory variables (X variables), which included the concentration of the volatile 

351 compounds emitted by pear wedges. Samples from day 0 were excluded of this model 

352 to refine the differentiation between the control and pear wedges treated with CPA-7. To 

353 carry out the analysis, all samples were included (those treated (Ca) or untreated with 
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354 CaCl2 (CK) and the samples with CPA-7 (CPA7) or without CPA-7 (Control), stored at 5 

355 ± 1 °C for 2 and 6 days). Therefore, a PLSR analysis including 8 samples and 43 volatile 

356 compounds was performed (Fig. 3). According to this model, up to 98 % of the variability 

357 was explained by the emission of volatile compounds. The analysis showed two groups; 

358 samples treated with CPA-7 were located on the right side of PC1, which explained 95 

359 % of the total variance, and samples without CPA-7 were located on the left side of PC1 

360 (Fig. 3A). The corresponding loadings plot (Fig. 3B) showed that the samples treated 

361 with CPA-7 were associated with high concentrations of 1-hexanol and (Z)-2-hexenyl 

362 acetate. There was not a clear influence of the volatile compounds on the differentiation 

363 of pear wedges treated or untreated with CaCl2 after harvest.

364 Fig. 4 shows the regression coefficients for the CPA-7 population vs. the emission of 

365 volatile compounds. This figure allowed us to identify those volatile components that 

366 were most influenced by the CPA-7 population. The application of CPA-7 was related to 

367 the emissions of six esters (methyl acetate, 3-methylbutyl acetate, (Z)-2-hexenyl acetate, 

368 2-methylpropyl butanoate, pentyl acetate, and butyl hexanoate), five alcohols (3-methyl-

369 2-butanol, 1-butanol, 2-methyl-1-butanol, 1-hexanol and (E)-2-hexen-1-ol), one aldehyde 

370 (hexanal), and acetone. 

371

372 4. Discussion

373 In previous studies (Iglesias et al., 2018), we demonstrated that CPA-7 was effective 

374 against S. enterica and L. monocytogenes on pear wedges at air temperatures of 20, 10 

375 and 5 ± 1 °C and determined the antioxidant solution and film best used for commercial 

376 applications. In this work, we have focused on the antagonistic activity of CPA-7 against 

377 foodborne pathogens under conditions that simulate commercial applications and how 

378 the presence of CPA-7 and the CaCl2 postharvest treatment influences several pear 

379 quality parameters, including the contents of several volatile compounds.
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380 After harvest of the fruit, cold storage and a controlled atmosphere are essential for 

381 delaying the ripening process. Moreover, postharvest dipping in CaCl2 prior to storage 

382 extends the commercial life for both whole and minimally processed fruit (Ortiz et al., 

383 2009; Trentham et al, 2008). Calcium can penetrate fruit flesh through lenticels, but 

384 cracks in the cuticle play a significant role in calcium entrance into the fruit (Conway et 

385 al., 2002; Ortiz et al., 2009). In general, CaCl2 treatment after harvest did not improve 

386 CPA-7 effectiveness against foodborne pathogens evaluated; nevertheless, the CPA-7 

387 population was higher on pear wedges treated with CaCl2 after harvest than it was on 

388 untreated samples. Microorganisms need calcium for their development, survival and 

389 physiological processes (Corbin et al., 2008). Tiwari et al. (1992) observed that an 

390 increase in extracellular Ca2+ caused an increase in the growth rate of Rhizobium 

391 melitoti. In addition, Onoda et al. (2000) demonstrated that in absence of Ca2+, E. coli 

392 stopped growing and cells became unusual in form and could lyse and die. However, it 

393 has been demonstrated that the amount of calcium required for bacteria depends on the 

394 growth conditions (Youatt, 1993).  

395 CPA-7 was not observed to have antagonistic activity against S. enterica under MAP at 

396 5 ± 1 °C, and no pathogen growth was observed. Similarly, Alegre et al. (2013a) did not 

397 observe an antagonistic effect against Salmonella on apple wedges. Regarding 

398 L. monocytogenes, we observed an antagonistic effect from CPA-7 after 9 days of 

399 storage at 5 ± 1 °C, and it caused reductions of approximately 1-log unit. Alegre et al. 

400 (2013a) also demonstrated an antagonistic effect of CPA-7 against L. monocytogenes 

401 on apple wedges; however, the effect was greater under air conditions than under MAP; 

402 a similar effect was observed by Abadias et al. (2014) for fresh-cut melon. According the 

403 review by Siroli et al. (2015a) some biocontrol agents were also able to control spoilage 

404 microorganisms naturally present in minimally processed fruits and vegetables. In our 

405 work, the effect of CPA-7 on the spoilage microorganisms was not evaluated. No visible 
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406 symptoms of microbial spoilage were observed neither in CPA-7 and control fresh-cut 

407 pears during the shelf-life (9 days at 5º C), so we could not reach to a clear conclusion. 

408 We observed significant differences in the SSC values of untreated and CPA-7-treated 

409 fresh-cut pear regardless of postharvest CaCl2 treatment, except after 6 days of storage 

410 in the case of the CaCl2-treated pear wedges. The SSC values of pear wedges treated 

411 with CPA-7 were 1 % lower than those of untreated pear, which could be perceived by 

412 the consumers as a less sweet taste. Regarding the TA values, significant differences 

413 were observed after 6 and 9 days of storage between the CaCl2-treated pear inoculated 

414 with CPA-7 and non-inoculated samples. It is known that consumers can perceive 

415 differences in the TA if the variation is higher than 0.08 % (Harker et al., 2002). In our 

416 case, the differences found after 6 and 9 days of storage were lower than this value and 

417 therefore could not be perceived by consumers. Alegre et al. (2013a) and Abadias et al. 

418 (2014) did not report significant differences in SSC or TA values among fruit (apple 

419 wedges or fresh-cut melon) untreated and treated with CPA-7. 

420 The results showed that ethanol and acetaldehyde production was not affected by the 

421 presence of CPA-7. We observed that the concentration of ethanol increased throughout 

422 the assay up to 95-179 mL L-1 regardless of the treatment. The acetaldehyde 

423 concentration reached its highest values after 6-9 days of storage. The fact that both 

424 metabolites increased during the storage time regardless of the treatment could indicate 

425 that the microorganism did not affect to the biosynthesis of these compounds, and they 

426 were produced by the fruit metabolism. 

427 The volatile profile emitted by minimally processed Conference pear stored at 5 °C was 

428 determined; esters accounted for more than 57 % of the volatile fraction of Conference 

429 wedges both treated and untreated with CaCl2. Esters are known as the most abundant 

430 class of compounds observed when using headspace analysis, and they are the volatile 

431 compounds that contribute the most to the aroma of intact and fresh-cut pears (Chen et 
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432 al., 2006, Bai et al., 2009). The major esters of Conference pear aroma (butyl and hexyl 

433 acetates) are predominant in other intact Pyrus communis pears including Comice 

434 (López et al., 2001), d’Anjou (Argenta et al., 2003), and Barlett (Zlatić et al., 2016), and 

435 the esters hare highly correlated with the fruity and characteristic pear aroma (Makkumrai 

436 et al., 2014).

437 The impact of CPA-7 inoculation on the volatile profiles of fresh-cut Conference pears 

438 differed depending on the CaCl2 treatment and cold storage time. According to the 

439 evaluation of volatile emissions during cold storage, 3 esters and 2 alcohols were only 

440 detected in Conference wedges inoculated with CPA-7 and not treated with CaCl2, 

441 namely, 3-methylbutyl acetate, butyl hexanoate, butyl propanoate, 1-hexanol and 1-

442 octanol. Previous works have shown that 3-methylbutyl acetate and 1-octanol are 

443 present in the volatile emission profiles of intact Comice pears (Makkumrai et al., 2014), 

444 butyl hexanoate is present in d’Anjou pears, and butyl propanoate and 1-hexanol are 

445 present in intact Conference pears (Rizzolo et al., 2005).  

446 When the data were analysed using a partial least square regression (PLSR) model, we 

447 could detect 13 volatile compounds (6 were esters, 5 alcohols, 1 aldehyde and 1 ketone) 

448 that were key variables for discriminating the samples in two groups (the control and 

449 inoculated with CPA-7 samples). The key compounds were methyl acetate (fruity, ripe, 

450 and floral notes), 3-methylbutyl acetate (fruity, banana, sweet pear), pentyl acetate 

451 (fruity, banana, pear and apples notes), (Z)-2-hexenyl acetate (fruity odour), 2-

452 methylpropyl butanoate (fruity, sweet, pineapple, apple, and tutti-frutti notes), butyl 

453 hexanoate (fruity, pineapple, and ripe fruit notes), 3-methyl-2-butanol (alcoholic, spicy, 

454 ethereal, cognac, fruity, fresh odour), 1-butanol (fruity, sweet, banana, fruit juice, and 

455 tutti-frutti notes), 2-methyl-1-butanol (wine, onion, fruity, alcoholic, and whisky notes), 1-

456 hexanol (herbal, fatty, and fruity), (E)-2-hexen-1-ol (green leafy, fresh, fatty, grassy with 

457 fruity and juicy nuances), hexanal (green, woody, vegetative, apple, grassy, citrus and 

458 orange with a fresh, lingering aftertaste) and acetone (fruity, blueberry, raspberry, and 

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



20

459 berry notes). Among the mentioned compounds, there are some that are common in the 

460 volatile profiles of pears (methyl acetate, 3-methylbutyl acetate, 1-butanol, 1-hexanol, 

461 and hexanal); therefore, increases in their contents could enhance flavour consumer’s 

462 perception. Nevertheless, we were not able to carry out a consumer preference test as 

463 this strain is not yet included in the QPS (Qualified Presumption of Safety) list of the 

464 EFSA. 

465

466 5. Conclusions

467 To conclude, CPA-7 was able to control the growth of L. monocytogenes after 9 days of 

468 storage. On the other hand, no effect was observed on the S. enterica population under 

469 the tested conditions. These results suggested that CPA-7 did not have a bactericidal 

470 effect against foodborne pathogens. CPA-7 treatment could improve the volatile profile 

471 and did not negatively affect the fruit quality. We did not observe a clear effect of 

472 postharvest CaCl2 treatment on the efficacy of CPA-7, and we studied the quality 

473 parameters of fresh-cut pear. 

474
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616 Table 1. Headspace gas composition (O2 and CO2, KPa) inside fresh-cut pear trays stored at 5 

617 °C ± 1 °C treated (Ca) or not (None) with 1 % CaCl2 after harvest and inoculated (CPA-7) or not 

618 (Control) with 108 cfu mL-1 of P. graminis CPA-7 after cutting. Different capital letters in the 

619 same row indicate significant differences during storage time according to a Tukey test (P<0.05) 

620 and different lowercase letters in the same column indicate significant differences between 

621 different treatment at the same time sampling for each gas according to a Tukey test (P<0.05).

622
623

624

625
626

627

DaysPostharvest 
treatment

Biopreservation 
treatment 0 2 6 9

None (Control) 21.0 ± 0.0 Ax 14.7 ± 0.5Bx 15.6 ± 1.4 Bx 14.6 ± 0.1 BxNone
CPA-7 (CPA-7) 21.0 ± 0.0 Ax 15.8 ± 0.6 Bx 14.7 ± 0.2 Bx 14.3 ± 1.0 Bx
None (CaControl) 21.0 ± 0.0 Ax 14.8 ± 1.9 Bx 16.4 ± 1.4 Cx 12.6 ± 1.0 Cx

O2

CaCl2 CPA-7 (CaCPA7) 21.0 ± 0.0 Ax 15.7 ± 0.4 Bx 15.0 ± 1.6 Bx 13.0 ± 2.0 Bx
None None (Control) 0.0 ± 0.0 Bx 6.1 ± 0.2 Ax 6.6 ± 1.4 Ax 7.9 ± 0.1 Ax

CPA-7 (CPA-7) 0.0 ± 0.0 Cx 4.9 ± 0.4 By 7.1 ± 0.3 Ax 7.8 ± 0.9 Ax
CaCl2 None (CaControl) 0.0 ± 0.0 Cx 5.7 ± 0.7 Bxy 5.9 ± 1.5 Bx 9.7 ± 0.8 Ax

CO2

CPA-7 (CaCPA7) 0.0 ± 0.0 Cx 4.7 ± 0.1 By 7.0 ± 1.4 ABx 9.3 ± 1.8 Ax
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628 Table 2. Solids soluble content (SSC, %) and titratable acidity (TA, g L-1) produced on 

629 fresh-cut pear stored at 5 °C treated (Ca) or not (None) with 1 % CaCl2 after harvest 

630 and inoculated (CPA-7) or not (Control) with 108 cfu mL-1 of P. graminis CPA-7 after 

631 cutting. Different capital letters in the same row indicate significant differences within 

632 the same treatment along the storage time according to Tukey’s test (P < 0.05). 

633 Different lower case letters in the same column indicate significant differences between 

634 treatments at each sampling time according to Tukey’s test (P < 0.05).

635

636  

Days at 5ºCPostharvest

treatment

Biopreservation

treatment 0 2 6 9

None (Control) 13.9 ± 0.0 Cb 14.0 ± 0.1 ABb 13.9 ± 0.1 BCb 14.1 ± 0.1 Ac
None

CPA-7 (CPA-7) 13.0 ± 0.0 Cc 13.7 ± 0.1 Ac 13.4 ± 0.1 Bc 13.1 ± 0.1 Cd

None (CaControl) 14.5 ± 0.1 Ba 14.5 ± 0.1 Ba 14.2 ± 0.1 Ca 14.8 ± 0.0 Aa

SSC 

(%)
CaCl2

CPA (CaCPA-7) 13.9 ± 0.0 Bb 14.2 ± 0.1 Ab 14.3 ± 0.0 Aa 14.3 ± 0.1 Ab

None (Control) 1.99 ± 0.07 Aa 2.10 ± 0.11 Aa 1.70 ± 0.08 Bab 1.70 ± 0.07 Ba
None

CPA-7 (CPA-7) 1.95 ± 0.08 Aa 2.14 ± 0.18 Aa 1.89 ± 0.08 Aa 1.27 ± 0.10 Bb

None (CaControl) 1.99 ± 0.05 Aa 1.94 ± 0.12 Aa 1.63 ± 0.08 Bb 1.60 ± 0.03 Ba

TA 
(g L-1)

CaCl2
CPA-7 (CaCPA-7) 1.83 ± 0.13 Aba 1.94 ± 0.14 Aa 1.62 ± 0.05 Bb 1.58 ± 0.04 Ba
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639 Table 3. Volatile compounds (ng g-1) produced by minimally processed pear stored at 5 
640 °C treated with CaCl2 after harvest. Different capital letters indicate significant differences 
641 between pear wedges treated and untreated with CPA-7 the same sampling time 
642 according to Student’s t test at significance level of P < 0.05. nd: not detected. traces: 
643 ≤ 10 ng g-1
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644

ACETATES
Methyl acetate 899,9 A 106,7 B 107,6 A nd 1379,2 A nd
Ethyl acetate 2813,8 A 1388,5 B 2488,7 A 2122,8 B 1172,7 A 707,5 B
Propyl acetate 127,7 B 296,8 A 251,8 B 449,0 A 492,4 B 3538,6 A
Butyl acetate 4746,0 B 13545,4 A 10425,1 B 22699,3 A 9860,3 A 4635,0 B
3-Methylbutyl acetate nd 417,3 A 144,3 B 211,8 A 168,7 B 1589,4 A
Pentyl acetate 226,0 B 356,8 A 156,8 A traces B 538,4 B 10044,7 A
Hexyl acetate 6266,3 B 6414,3 A 4872,9 B 7838,3 A 8269,8 B 13127,6 A
(Z)-2-hexenyl acetate 271,8 A traces B 188,8 A traces B 87,4 B 1943,1 A
Octyl acetate 532,3 A 46,3 B 619,0 A 64,7 B 164,6 B 1166,8 A
BUTANOATES
Methyl butanoate 433,1 A 89,2 B 372,8 A nd 131,9 B 2742,5 A
Ethyl 2-methylbutanoate 58,4 B 83,6 A 85,0 A nd 8789,8 A 1931,7 B
2-Methylpropyl butanoate 246,5 B 525,8 A 664,9 A 662,1 A 596,0 B 2105,9 A
Butyl 2-methylbutanoate nd nd nd nd 158,5 B 1558,2 A
Butyl butanoate 70,1 A 71,6 A 154,1 B 242,0 A 207,1 A 134,5 B
2-Methylbutyl-2-methylbutanoate 149,6 B 357,1 A nd 416,8 A nd 5884,4 A
Hexyl butanoate nd nd nd nd nd nd
Hexyl 2-methylbutanoate nd nd nd nd nd nd
HEXANOATES
Ethyl hexanoate nd nd nd nd 782,1 B 2791,0 A
Butyl hexanoate 475,2 A nd 1235,3 B 1471,1 A 604,4 B 7734,6 A
Pentyl hexanoate 116,6 A nd 190,4 A nd nd 1097,6 A
Hexyl hexanoate 392,9 A 334,7 A 280,3 A nd 188,8 B 2696,4 A
PROPANOATES
tert -Butyl propanoate 137,5 A 97,7 B 94,5 A nd 256,7 B 2198,5 A
Butyl propanoate 148,2 A 45,9 B 238,6 A nd 89,9 B 1759,6 A
OCTANOATES
Ethyl octanoate 956,6 A nd 287,4 A 67,0 B nd 815,1 A
PENTANOATES
Pentyl 3-methylbutanoate nd 179,2 A nd 236,8 A nd 1800,1 A
ALCOHOLS
Ethanol 24582,3 B 61475,7 A 6170,3 B 8099,1 A 2971,8 B 11412,8 A
3-Methyl-2-butanol 11972,9 B 14742,8 A 11672,9 A nd 12480,4 A 4561,2 B
1-Butanol 59,1 B 81,6 A 75,4 A nd 105,4 B 2729,8 A
2-Methyl-1-butanol nd 73,1 A nd nd 205,0 B 731,9 A
1-Pentanol 166,5 B 278,0 A nd 109,3 A 60,6 B 1588,3 A
1-Hexanol 233,0 A nd 304,5 A nd 261,3 B 1122,5 A
(E)-2-Hexen-1-ol traces B 396,1 A traces A traces A traces A traces A
2-Ethyl-1-hexanol 3674,8 A 1197,0 B 3439,4 A 723,7 B 793,4 B 9456,4 A
1-Octanol 94,8 A 59,0 B 181,1 A 75,4 B nd 170,7 A
Benzyl alcohol 2809,1 A 329,7 B 6167,3 A 664,0 B 304,3 B 10877,9 A
ALDEHYDES
Acetaldehyde 1139,8 A 985,5 B 673,4 A nd nd 693,4 A
Hexanal 714,0 A 594,1 B 37316,8 A 2546,8 B 1713,9 B 4962,6 A
2-Ethylhexanal 52,4 B 260,2 A 78,0 B 1127,0 A 69,3 B 1048,3 A
Benzaldehyde 352,7 A nd 489,1 A 202,8 B 201,2 B 1402,2 A
TERPENES
-Farnesene 577,4 A 50,6 B 583,3 A 135,9 B 776,9 B 1188,2 A
KETONES
Acetone 531,4 A traces B traces A traces A traces A traces A
6-Methyl-5-hepten-2-one nd nd nd nd nd nd
ACIDS
Acetic acid 252,5 A nd 583,8 A 90,1 B nd 2905,3 A

Treated with CaCl2 

0 days 2 days 6 daysVolatile compounds
 CPA-7 no CPA-7  CPA-7 no CPA-7  CPA-7 no CPA-7
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646 Table 4. Volatile compounds produced (ng g-1) by minimally processed pear stored at 5 
647 °C untreated with CaCl2 after harvest. Different capital letters indicate significant 
648 differences between pear wedges treated and untreated with CPA-7 the same sampling 
649 time according to Student’s t test at significance level of P < 0.05. nd: not detected. 
650 traces: ≤ 10 ng·g-1

651

ACETATES
Methyl acetate 258,0 A 107,0 B traces A traces A traces A traces A
Ethyl acetate 609,3 B 1347,3 A 1520,5 B 1649,0 A 782,0 B 2628,8 A
Propyl acetate 315,9 A 395,7 A 556,5 A 503,1 A 484,8 A 289,0 B
Butyl acetate 9768,8 A 5127,2 B 18653,7 A 18972,4 A 13518,8 B 14022,1 A
3-Methylbutyl acetate 237,7 A nd 274,2 A nd 187,5 A nd
Pentyl acetate nd 17,8 A nd nd nd nd
Hexyl acetate 8301,7 A 5043,2 B 11384,6 A 6844,1 B 5776,1 B 7945,7 A
(Z)-2-hexenyl acetate 351,5 A traces B 292,8 A traces B 245,9 A traces B
Octyl acetate 1348,6 A 332,7 B 173,1 A nd 259,5 A nd
BUTANOATES
Methyl butanoate 187,3 A nd 68,6 B 224,4 A 132,1 A nd
Ethyl 2-methylbutanoate nd nd 367,8 A nd nd 185,1 A
2-Methylpropyl butanoate 704,4 A 115,4 B 824,5 A 753,9 B 933,9 A 487,3 B
Butyl 2-methylbutanoate nd nd nd nd nd nd
Butyl butanoate 230,9 A traces B 385,1 A traces B 558,9 A 407,2 B
2-Methylbutyl-2-methylbutanoate nd nd nd 303,1 A nd nd
Hexyl butanoate 373,6 A nd nd nd nd nd
Hexyl 2-methylbutanoate 577,3 A nd nd nd nd nd
HEXANOATES
Ethyl hexanoate nd nd 123,4 A nd nd nd
Butyl hexanoate 334,8 A nd 1125,9 A nd 920,9 A nd
Pentyl hexanoate 478,3 A nd nd nd nd nd
Hexyl hexanoate 1006,4 A 599,7 B 466,8 A 254,0 B 296,5 A nd
PROPANOATES
tert -Butyl propanoate nd 115,7 A nd nd nd nd
Butyl propanoate 222,1 A nd 116,8 A nd 331,4 A nd
OCTANOATES
Ethyl octanoate 437,1 A nd nd 119,6 A 51,0 A nd
PENTANOATES
Pentyl 3-methylbutanoate nd nd 87,9 A nd nd 406,4 A
ALCOHOLS
Ethanol 188734,4 A 3676,9 B 13305,8 A 6648,5 B 1983,8 B 6586,0 A
3-Methyl-2-butanol 221,3 B 15256,4 A 391,2 A nd nd 321,6 A
1-Butanol nd 118,9 A nd nd nd nd
2-Methyl-1-butanol nd nd 114,2 A nd nd nd
1-Pentanol nd nd nd nd nd 122,2 B
1-Hexanol 291,0 A nd 406,8 A nd 368,7 A nd
(E)-2-Hexen-1-ol traces A traces A traces A traces A 767,0 A traces B
2-Ethyl-1-hexanol 5575,7 A 2445,7 B 1141,2 A 516,4 B 1133,4 A 304,1 B
1-Octanol 506,4 A 104,4 B 182,4 A nd 106,0 A nd
Benzyl alcohol 7283,4 A 172,5 B 2685,9 A 1239,0 B 4129,8 A 442,4 B
ALDEHYDES
Acetaldehyde 2122,5 A 780,4 B 401,4 B 834,5 A nd 1262,8 A
Hexanal 1521,9 A nd 2813,0 A 1381,0 B 6668,4 A 1515,8 B
2-Ethylhexanal 56,3 A 59,3 A 156,1 A 88,9 B 110,9 A 78,4 B
Benzaldehyde 1123,0 A 649,4 B 399,8 A nd 405,5 A nd
TERPENES
-Farnesene 3658,5 A 931,7 B 264,6 A traces B 531,9 A traces B
KETONES
Acetone traces B 62,9 A traces A traces A traces A traces A
6-Methyl-5-hepten-2-one 405,3 A nd 119,3 A nd nd nd
ACIDS
Acetic acid 775,9 A nd nd nd 164,9 A nd

no CPA-7
Volatile compounds

Untreated with CaCl2 
0 days 2 days 6 days

 CPA-7 no CPA-7  CPA-7 no CPA-7  CPA-7
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652

653 FIGURE CAPTIONS

654 Fig. 1 Salmonella (A), L. monocytogenes (B) and CPA-7 (C) population (log cfu g-1) on 

655 fresh-cut pear treated or not with CaCl2 1 % after harvest and then processed and stored 

656 at 5 ± 1 °C. The results are the means of three values. Vertical bars indicate the standard 

657 deviations of the means. Different capital letters indicate significant differences within the 

658 same treatment throughout the storage time according to Tukey’s test (P < 0.05). 

659 Different lower-case letters indicate significant differences among the same treatment on 

660 pears untreated or treated with CaCl2 at each sampling time according to Student’s t test 

661 (P < 0.05). * Indicates significant differences between samples with or without CPA-7 at 

662 each sampling time (Student’s t test at significance level of P < 0.05).

663 Fig. 2 Concentration (mL·L-1) of ethanol (A) and acetaldehyde (B) produced on CaCl2-

664 untreated pear wedges inoculated without CPA-7 or with CPA-7 and CaCl2-treated pear 

665 wedges inoculated without CPA-7 or with CPA-7 processed and stored at 5 ± 1 °C. The 

666 results are the means of 3 values. Vertical bars indicate the standard deviations of the 

667 means. Different capital letters indicate significant differences within the same treatment 

668 along the storage time according to Tukey’s test (P < 0.05). Different lower-case letters 

669 indicate significant differences between treatments at each sampling time according to 

670 Tukey’s test (P < 0.05). 

671 Fig. 3 Score (A) and loading (B) plots of PC1 vs. PC2 corresponding to a PLSR model 

672 for CPA-7 population vs. emissions of volatile compounds on pear wedges stored at 5° 

673 C. 

674 Fig. 4 Regression coefficients corresponding to a PLSR model for CPA-7 population vs. 

675 emissions of volatile compounds on pear wedges stored at 5 ± 1 °C.

676

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888









Figure 4




