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ABSTRACT  20 

Modern swine farming is characterized by the emergence of several syndromes whose 21 

aetiology is unclear or has a multi-factorial origin, including periweaning failure-to-22 

thrive syndrome (PFTS). In fact, its specific aetiology remains elusive, although several 23 

causes have been investigated over time. The present study aimed to investigate the 24 

potential role of viral agents in PFTS-affected and heathy animals by evaluating the 25 

virome composition of different organs using a metagenomics approach. This analysis 26 

allowed demonstrating a higher abundance of Porcine parvovirus 6 (PPV6) in healthy 27 

subjects while Ungulate bocaparvovirus 2 (BoPV2), Ungulate protoparvovirus 1 (PPV) 28 

and Porcine circovirus 3 (PCV-3) were increased in pigs with PFTS. No differential 29 

abundance of RNA viruses were found between PFTS-affected and control pigs. 30 

Remarkably, this is the first molecular characterization of PPV6 and BoPV2 in Spain 31 

and one of the few all around the world, supporting their apparent widespread 32 

circulation. Interestingly, PCV-3 has been recently identified in several clinical-33 

pathological conditions as well as in healthy pigs, while BoPV2 pathogenic potential is 34 

unknown. Although obtained results must be taken as preliminary, they open the door 35 

for further studies on the potential role of these viruses or their combination as 36 

predisposing factor/s for PFTS occurrence.  37 

 38 
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INTRODUCTION 42 

Episodes of failure to thrive and growth retardation can be occasionally seen in the 43 

nursery phase. However, they were typically neglected because of the marginal 44 

economic significance.1 In most of the cases, those situations were usually attributed to 45 

the lack of proper adaptation of the piglet from the liquid diet during the lactation period 46 

to the solid one at nursery.2 This is expectable to a certain low percentage of piglets and 47 

modern pig production deals with this problem by means of introducing solid feed to 48 

piglets during lactation, use of fermented liquid feeds in nursery2 and by creating a 49 

friendlier environment for the piglet at weaning.3 By 2008, in North-America, several 50 

unrelated farms experienced a significantly increased number of piglets with anorexia, 51 

lethargy, progressive debilitation and death mainly within the first week after weaning.4 52 

Such scenario was clinically described with names such as postweaning catabolic 53 

syndrome, postweaning wasting-catabolic syndrome, failure to thrive syndrome, and 54 

postweaning fading pig-anorexia syndrome.4  55 

The emergence of more frequent and relevant outbreaks of this syndrome in 56 

Canada prompted to develop a more precise case definition. By 2010, the condition was 57 

named periweaning failure-to-thrive syndrome (PFTS). Clinically, PFTS-affected pigs 58 

are characterized by progressive loss of weight and debilitation in absence of discernible 59 

and detrimental infectious, nutritional, management or environmental factors.4 Although 60 

not constant, a number of diseased pigs show an unusual repetitive oral behaviour such 61 

as licking, chewing or chomping,5 which makes the condition easier to suspect. 62 

Although several histopathological lesions have been evidenced in PFTS, the current 63 

definition includes the presence of superficial gastritis, thymic atrophy and small 64 

intestine villous atrophy.6  65 
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While clinical signs were initially suspected to be caused by an unknown 66 

infectious agent, the role of most known parasitic, bacterial and viral agents were ruled 67 

out; most of the studied pathogens were not found in PFTS affected piglets or they were 68 

identified with comparable frequency in healthy and diseased pigs.5 Additionally, 69 

attempts to reproduce the disease by pig inoculation with tissue homogenates of 70 

diseased animals were unsuccessful.7 This evidence was not supportive of the 71 

hypothesis that PFTS may have an infectious etiology.  72 

Interestingly, some studies highlighted the potential genetic predisposition to the 73 

disease,8,9 which would be ascribable to variability in genes involved in brain 74 

development and metabolism and part of signalling pathways associated to neurological 75 

and depressive disorders in human beings.10,11  76 

PFTS was diagnosed in Spain for the first time in 2012,12 and although the 77 

condition had a significant impact in some farms, the incidence of the condition has 78 

apparently decreased. Nevertheless, the true aetio-pathogenesis of PFTS is still obscure 79 

and unresolved, and the role of an unknown pathogen cannot be completely excluded, 80 

especially considering that the current knowledge of the virosphere is still at its infancy 81 

and more viral species are continuously being discovered.13-16 Based on these premises, 82 

an exploratory metagenomics analysis was performed for the first time to evaluate the 83 

presence of previously unknown viral pathogens in PFTS pigs and in healthy 84 

counterparts. 85 

 86 

MATERIALS AND METHODS 87 

Farm and piglet selection  88 

After initial diagnosis of PFTS in Spain12 an increasing number of clinical cases were 89 

further characterized as PFTS based on established criteria.4 The affected farm from 90 
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which PFTS affected pigs were selected was located in North-Eastern Spain. It 91 

consisted of a 360-sow farm producing 18 kg pigs, with a historical nursery mortality of 92 

1.78% before 2010. From October 2010 to April 2012, nursery mortality increased to an 93 

average of 5.3% and most of the difference between periods accounted for piglets 94 

undergoing wasting during the first two weeks post-weaning. The farm was 95 

seronegative against Aujeszky’s disease virus, Porcine reproductive and respiratory 96 

syndrome virus (PRRSV) and Mycoplasma hyopneumoniae. 97 

Three 6 week-old, cross-bred female piglets with clinical signs consistent with 98 

PFTS were selected, euthanized with an intravenous overdose of pentobarbital and 99 

necropsied. At necropsy, tissue samples (lung, intestine, kidney, liver and brain) were 100 

collected and frozen in -80°C until processing for Next Generation Sequencing (NGS) 101 

as described below. Also, a wider set of tissues (including also nasal turbinates, heart, 102 

tonsil, inguinal superficial lymph node, spleen and stomach) were collected, fixed by 103 

immersion in 10% buffered formalin, embedded in paraffin and sectioned at 4 µm for 104 

histopathological analyses. All three animals displayed thymus atrophy, serous atrophy 105 

of the fat, atrophy and fusion of villi and mild lympho-plasmacytic gastritis. Porcine 106 

circovirus 2 (PCV-2) and PRRSV were also ruled out by means of 107 

immunohistochemical methods. 108 

Three age-matched cross-bred healthy piglets (two males and one female) from 109 

a 500-sow farm that never displayed clinical signs compatible with PFTS were selected 110 

as negative controls. The herd was seronegative against Aujeszky’s disease virus and 111 

PRRSV, but seropositive to M. hyopneumoniae. These animals were subjected to the 112 

same procedures as mentioned above for the affected pigs, and did not have any 113 

noticeable gross or histological lesion. 114 

 115 
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DNA and RNA extraction 116 

DNA and RNA were extracted from brain, intestine, kidney, liver and lung of three 117 

healthy animals and three PFTS cases.  118 

For total DNA extraction, 30 mg of each frozen tissue was homogenized in Tris-119 

buffer, followed by three freeze-thaw cycles. Samples were then centrifuged to pellet 120 

nuclei and large cellular aggregates, and filtered through 0.45 μm filter. To remove 121 

remaining host genomic DNA, the samples were treated with DNase. Finally, DNA was 122 

extracted using NucleoSpin Blood (Macherey-Nagel) according to manufacturer’s 123 

instructions. At this point, pools were generated mixing equimolar amounts of DNA 124 

treated as explained above, from brain (pool A), intestine (pool B), and kidney, liver and 125 

lung (pool C) from PFTS affected and healthy piglets. The quality and quantity of DNA 126 

pools were verified by Bioanalyzer and spectrophotometry (Nanodrop). 127 

For total RNA extraction, 30 mg of each frozen tissue was treated with DNAse 128 

and homogenized in Trizol reagent followed by RNA isolation using Ambion Ribo Pure 129 

columns as recommended by the manufacturer (Life Technologies). Contaminating 130 

DNA was removed from RNA preparations using TURBO DNA-free Kit (Ambion, Life 131 

Technologies). The integrity of purified RNA was confirmed by Bioanalyzer and 132 

concentration determined by spectrophotometry (Nanodrop). According to preliminary 133 

NGS experiments, ribosomal RNA was present in the RNA samples in excessive 134 

amounts. Therefore, a ribosomal RNA (rRNA) removal was tested and subsequently 135 

incorporated in the protocol. RiboMinus Eukaryote System v2 (Ambion, Life 136 

Technologies) was used to remove the rRNA from 5 μg of pooled total RNA according 137 

to recommendations. Removal of rRNA was verified by Bioanalyzer. At this point, 138 

pools were generated including total RNA from brain (pool A), intestine (pool B), and 139 

kidney, liver and lung (pool C) from all tested animals 140 
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 141 

Library preparation and Next Generation Sequencing. 142 

Sequencing libraries were prepared for each pool and were run as recommended by the 143 

manufacturer (Ion Torrent, Life Sciences). Each library was run in a 318 chip and post-144 

sequencing processing was done based on quality, removing low quality reads and 145 

polyclonal reads. Resulting files for each pool were used in the data analysis. 146 

 147 

NGS data analysis 148 

Quality of obtained FASTQ files was visually inspected using PRINTSEQ17 and reads 149 

shorter than 30 bp, with an average Phred quality score lower than 30 or with more than 150 

one base with a quality lower that 15, were removed. Additionally, tag removal and 151 

trimming of poor quality bases, poly-A/T and poly-N at 5’ and 3’ tails were performed 152 

using the same software.  153 

To remove the host genome contamination, obtained reads were aligned to the 154 

Sus scrofa reference genome using bowtie2.18 Unaligned reads were processed for viral 155 

taxonomic classification using Kraken,19 benefiting of the computational power offered 156 

by the Galaxy platform.20 Results were further confirmed using MGmapper.21 In both 157 

cases, the most updated version of the viral database, available on the respective web 158 

server (https://usegalaxy.org/ and https://cge.cbs.dtu.dk/services/Mgmapper-2.4), was 159 

selected as reference dataset for the analysis.  160 

The classified reads count was normalized and the presence of statistically 161 

significant differences in the abundance of viral reads between PFTS and healthy 162 

animals in different tissues was assessed using the metagenomeSeq22 library 163 

implemented in R.  164 

https://usegalaxy.org/
https://cge.cbs.dtu.dk/services/Mgmapper-2.4
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More particularly, normalization was performed using the cumNorm function. 165 

The cumNormStatFast function was used to select the most appropriate percentile to 166 

normalize the reads counts . Statistical testing of differences between diseased and 167 

healthy animals was assessed on all tissues altogether using the Zero-inflated Log-168 

Normal mixture model, implemented in the fitFeatureModel function. Similarly, for the 169 

comparison among different tissues, the Limma’s topTable function for F-tests and 170 

respective contrast functions, implemented in the same R library, were used. 171 

 172 

Reference based alignment 173 

The whole reference genomes of viruses detected to be differentially present between 174 

healthy and diseased animals were downloaded from RefSeq and used for reference-175 

based alignment using Bowtie2.18 Samtools23 was used to convert, sort and remove 176 

duplicates from the obtained SAM files. Finally, sample specific coverage and 177 

consensus sequence were generated using QUASR.24 The obtained consensus 178 

sequences, originating from the three pooled individuals, have been made available in 179 

GenBank (Accession Numbers: MH558676-MH558679). 180 

To confirm the obtained viral classification, for each examined viral species, a 181 

set of sequences was downloaded from the GenBank and aligned with the consensus 182 

sequence obtained from experimental samples. A species-specific phylogenetic tree was 183 

reconstructed to confirm and improve the viral classification using the Maximum 184 

likelihood method implemented in PhyML,25 selecting as substitution model the one 185 

with the lowest AIC calculated using JmodelTest.26 The robustness of the clade 186 

reliability was evaluated using the fast non-parametric version of the aLRT 187 

(Shimodaira–Hasegawa [SH]-aLRT), developed and implemented in PhyML 3.0.27 188 

 189 
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RESULTS 190 

Next generation sequencing analyses. 191 

Around 500 thousand NGS reads were obtained for each sample; most of those passed 192 

the quality evaluation step and were included in the final analysis. A more detailed 193 

summary of available reads is reported in Table 1.  194 

Considered reads were assigned to several viral families using the Kraken 195 

analysis (Supplementary tables 1 and 2). However, only four DNA viruses’ abundances 196 

differed significantly (P < 0.001) between healthy and diseased animals: Porcine 197 

parvovirus 6 (PPV6), Ungulate bocaparvovirus 2 (BoPV2), Ungulate protoparvovirus 1 198 

(PPV) and Porcine circovirus 3 (PCV-3). PPV6 was mostly represented in healthy 199 

animals while the other viruses (BoPV2, PPV and PCV-3) were more abundant in 200 

diseased ones (Table 2). No statistical difference was observed in viral tissue 201 

distribution with the only exception of BoPV2, which was detected only in the intestine  202 

PFTS animals (Table 2). 203 

No differences were observed in RNA viruses’ frequency, but a low number of 204 

reads was mapped to RNA viruses of potential veterinary interest with the exact match 205 

k-mers approach implemented in Kraken. Differently from the DNA analysis, where 206 

Kraken and MGmapper provided essentially concordant results, Kraken RNA results 207 

could not be confirmed with the MGmapper analyses, which identified no relevant RNA 208 

viruses.  209 

 210 

Reference based alignment 211 

The complete genome sequence was reconstructed for the four above mentioned 212 

viruses. The posterior sequence comparison through BLAST and phylogenetic analysis 213 

confirmed the taxonomic classification. More specifically, percentages of identity of 214 
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99%, 95%, 99% and 99% were proven compared to the most closely related sequences 215 

published in the GenBank, for PPV6, BoPV2, PPV and PCV-3 respectively.  Reference 216 

based alignment of detected RNA viruses of potential interest for swine industry yielded 217 

negative results, suggesting the identification of unspecific matches due to the small k-218 

mer size using Kraken and confirming MGmapper results. 219 

No among-organ differences were observed in the consensus sequences of the 220 

considered viruses.  221 

 222 

DISCUSSION  223 

The development of isolation- and sequence-independent metagenomics tools has 224 

remarkably increased the detection of previously unknown viruses during overt clinical 225 

disease episodes.15,28,29 Nevertheless, the detection of a new virus species does not 226 

imply a causal nexus and reliable proof of the pathogenic role are often hard to be 227 

proven. In fact, the modern livestock farming is characterized by the identification of 228 

several clinical syndromes whose aetiology is unclear or, more frequently, has a multi-229 

factorial origin. Accordingly, several infectious diseases are considered to be 230 

“conditioned diseases”, whose overt clinical manifestation occurs only in presence of 231 

several co-factors and/or co-infections.30 232 

The present study reports the comparison of healthy pigs’ virome in different 233 

tissues with the one of subjects experiencing PFTS. The NGS analysis performed on 234 

pooled samples allowed achieving relevant sequence numbers for each tissue, which 235 

were assigned to a number of specific taxonomic units. Interestingly, a low number of 236 

RNA reads were classified as viral species. Since the total read number for each pool 237 

was comparable between RNA and DNA pools (Table 1) and the same bioinformatics 238 

approach was used, a less effective removal of host or other microorganism RNA during 239 
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sample processing was likely. Alternatively, the presence of a higher number of reads 240 

originating from unidentified RNA viruses is possible. Although no differences were 241 

detected in RNA virus abundance, four species belonging to DNA-virus groups 242 

displayed a statistically significant different abundance between healthy and diseased 243 

animals: PPV6, BoPV2, PPV and PCV-3. Among those, PPV6 (family Parvoviridae, 244 

subfamily Parvovirinae, proposed genus Copiparvovirus)31 was the only virus sequence 245 

overrepresented in healthy animals and was detected in all considered tissue pools. The 246 

current information about this species is scarce, however, its detection in USA,32 247 

China,31 Poland33 and Spain (present study) allows speculating a widespread 248 

distribution of this virus. Moreover, there is no clear association between PPV-6 249 

infection and clinical outcome in pigs.31,32  250 

On the contrary, the other two members of the family Parvoviridae, subfamily 251 

Parvovirinae (BoPV2 and PPV) were more abundant in diseased animals. Particularly, 252 

BoPV2, genus Bocaparvovirus, was only detected in the intestine of PFTS animals. The 253 

herein described strain represents the first PBoV2 detection in Spain and one of the few 254 

genetic characterizations all around the world. BoPV2 has been previously detected in 255 

Sweden,34 Germany35 and China.36 This genus include several viral species, and some 256 

of them have been associated to enteric and respiratory disease in animals and human 257 

beings.37 Although no proof has been reported supporting the pathogenic role of 258 

ungulate bocaparvoviruses in swine, a higher infection prevalence has been described in 259 

pigs co-infected with other pathogens, providing support for a potential facilitating role 260 

in other infections.38,39 PPV (genus Protoparvovirus) is a well-established pathogen of 261 

swine, with a noteworthy impact on animal health. However, its relevance is 262 

substantially linked to reproductive disorders after foetal infection and no significant 263 

effects on post-natal pigs have been reported except for a transient lymphopenia.40 264 
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Consequently, a clear role of these viruses in the observed clinical signs cannot be 265 

claimed.  266 

Remarkably, the present study demonstrates the presence of higher abundance of 267 

PCV-3 sequences in all the considered tissues of PFTS pigs only. This recently 268 

discovered virus has already been detected in samples from pigs suffering from several 269 

clinical syndromes,41-43 even though its pathological role has not been proven yet.44-47 270 

The simultaneous detection of PCV-3 and different porcine parvoviruses in 271 

PFTS affected pigs is at least of interest. Both experimental and field studies 272 

demonstrated that co-infection with PPV increase the effect of PCV-2 in causing porcine 273 

circovirus 2-systemic disease (PCV-2-SD).48,49 Similarly, the first detection of porcine 274 

boca-like virus occurred in the background of PCV-2-SD.34 If a similar synergistic 275 

effect between PCV-3 and detected parvoviruses is involved in PFTS emergence will 276 

need further investigations.  277 

Previous studies have revealed evidence against the infectious aetiology of 278 

PFTS, including the failure to reproduce disease through the use of inocula from 279 

diseased animal tissue homogenates.7 While this evidence is undoubtedly suggestive of 280 

a non-infectious cause, it cannot be considered definitive. In fact, the presence of the 281 

etiological agent cannot be sufficient to elicit clinical signs’ appearance in the 282 

framework of a multi-factorial disease hypothesis. A genetic predisposition has also 283 

been reported, linking the disease to a hereditary reduced stress resistance during the 284 

weaning phase.10,11 However, an interaction between infection susceptibility, disease 285 

development and genetic background has been already demonstrated for a number of 286 

infectious diseases in different animal species,50-52 and it might be also the case of 287 

PFTS.  288 
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 It must be stressed that no statistical test could be performed to assess the 289 

presence of a significant difference in viral abundance tissue by tissue between healthy 290 

and diseased animals. However, the comparable read numbers in different tissue pools 291 

and the remarkable difference (typically presence vs absence) between healthy and 292 

diseased animals in the considered samples, support a differential viral abundance in all 293 

tissues of the compared groups, being the BoPV2 the only relevant exception.  294 

The present study was considered as exploratory in nature, and some limitations 295 

must be highlighted. On one hand, the limited number of considered animals and 296 

sample pooling may hide the inference of obtained conclusions on a broader scale. On 297 

the other hand, an additional control group (healthy pigs from the same PFTS affected 298 

farm) would have been desirable to completely rule out herd-level differences unrelated 299 

to PFTS. Therefore, further studies with higher number of animals and the three group-300 

comparison design might provide more solid evidence of the potential infectious 301 

causation of PFTS. Similarly, the absence of a no-template control during library 302 

preparation and sequencing steps does not allow excluding the presence of some 303 

“contaminant” reads in the final dataset. In fact, a low number of reads classified as 304 

DNA viruses was detected in RNA-based libraries and vice versa. However, the count 305 

of these exceptions was orders of magnitude lower than the gap in the abundance of 306 

those viral species demonstrated to significantly differ between PFTS and healthy 307 

animals, supporting the reliability of the results. In spite of these limitations, this study 308 

opens the door for a new aetiological hypothesis on the PFTS pathogenesis and 309 

stimulates dedicated and more extensive studies to provide a clearer aetio-pathogenic 310 

picture for this disease.  311 

 312 

 313 
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Table 1. Summary of obtained and included reads for each animal group and tissue. 481 

 482 

Nucleic 
Acid 

Animal Group Tissue Pool 
Reads 

number 
Mean 
length 

Reads 
included 

in the 
analysis 

DNA 

Pools from Healty 
animals 

Brain (pool A) 4475711 272 4271248 

Intestine (pool B) 5263610 270 5029314 

Kidney/liver/lung (pool C) 3867029 240 3443772 

Pools from PFTS 
animals 

Brain (pool A) 4596751 246 3640701 

Intestine (pool B) 5519346 269 5267485 

Kidney/liver/lung (pool C) 4418469 251 4115840 

RNA 

Pools from Healty 
animals 

Brain (pool A) 5980195 148 3110813 

Intestine (pool B) 6404609 143 3559730 

Kidney/liver/lung (pool C) 6044144 132 3333853 

Pools from PFTS 
animals 

Brain (pool A) 6002491 114 3467236 

Intestine (pool B) 6219160 117 3738157 

Kidney/liver/lung (pool C) 5971371 102 3063793 

 483 

 484 

 485 
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Table 2. Summary of reads assigned to the considered viral species in different animal categories and tissues.  486 

 487 

 488 

 
Brain (pool A) Intestine (pool B) Kidney/liver/lung (pool C) 

   
Virus PFTS Healthy PFTS Healthy PFTS Healthy Average Count in PFTS animals Average count in healthy animals P-value 

PPV6 0 12060 0 73749 0 28286 0 38031.67 P < 0.001 

BoPV2 0 0 14144 0 0 0 4714.67 0 P < 0.001 

PPV 1553 3 17646 0 460091 0 159763.33 1 P < 0.001 

PCV-3 9845 0 2599 0 5877 0 6107 0 P < 0.001 

 489 




