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Advancements in genome sequencing have facilitated whole-genome characterization of numerous 
plant species, providing an abundance of genotypic data for genomic analysis. Genomic selection 
and neural networks (NNs), particularly deep learning, have been developed to predict complex 
traits from dense genotypic data. Autoencoders, an NN model to extract features from images in 
an unsupervised manner, has proven to be useful for plant phenotyping. This study introduces an 
autoencoder framework, GenoDrawing, for predicting and retrieving apple images from a low-depth 
single-nucleotide polymorphism (SNP) array, potentially useful in predicting traits that are difficult 
to define. GenoDrawing demonstrates proficiency in its task using a small dataset of shape-related 
SNPs. Results indicate that the use of SNPs associated with visual traits has substantial impact 
on the generated images, consistent with biological interpretation. While using substantial SNPs 
is crucial, incorporating additional, unrelated SNPs results in performance degradation for simple 
NN architectures that cannot easily identify the most important inputs. The proposed GenoDrawing 
method is a practical framework for exploring genomic prediction in fruit tree phenotyping, particularly 
beneficial for small to medium breeding companies to predict economically substantial heritable traits. 
Although GenoDrawing has limitations, it sets the groundwork for future research in image prediction 
from genomic markers. Future studies should focus on using stronger models for image reproduction, 
SNP information extraction, and dataset balance in terms of phenotypes for more precise outcomes.

Introduction

Advances in high-throughput genome sequencing and geno-
typing methods have brought to reality the whole-genome 
characterization of many plant species, including models and 
crops, and the analysis of diversity at population level. Under 
this scenario of huge amounts of genotypic data, the link 
between genotype and phenotype in crops has the tremendous 
potential to identify genes or genome regions involved in the 
natural variation of relevant agricultural traits and to predict 
the performance of offsprings in specific environments. For 
traits controlled by major genes or moderate to strong quanti-
tative trait loci, linkage mapping in biparental families or 
genome-wide association analysis in germplasm collections 
allow the development of markers that can, eventually, be used 
for marker-assisted breeding. By contrast, complex quantitative 
traits regulated by multiple quantitative trait loci with minor 
effects are difficult to predict with few markers. Genomic selec-
tion models have been developed to overcome this limitation 
[1–4]. Briefly, they predict complex traits from dense genotypic 
data and a set of qualitative, continuous, or discrete measurable 
trait descriptors in a training population to ultimately estimate 

the performance of the individuals of a breeding population 
from their genomic profile. More recently, neural networks 
(NNs) are being suggested as a powerful tool for genomic pre-
diction that may surpass some challenges associated with the 
classical genomic selection models, such as the requirement of 
assuming data distributions of the linear models, or the require-
ment of priors’ specifications in Bayesian models [5]. NNs and 
deep learning (DL) are subfields of artificial intelligence that 
use multiple interconnected nodes, called artificial neurons, to 
process information and make predictions. These networks can 
have multiple layers, allowing for complex and nonlinear anal-
ysis of data. DL algorithms have demonstrated improved accu-
racy and speed compared to other artificial-intelligence-based 
methods [6]. Deep NNs have been already applied for genomic 
prediction in several fields, using real [7,8] and simulated [9] 
single-nucleotide polymorphism (SNP) marker data, stimu-
lated by the growing availability of easy-to-use deep NN frame-
works such as PyTorch [10] and TensorFlow [11]. Within the 
DL field of study, generative models (i.e., unsupervised models 
that learn from patterns to finally generate new examples that 
could have been derived from the original dataset) encompass 
a vast and complex area [12] and are living a new golden age 
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after the publication of the generative adversarial networks 
where one NN compete to generate new synthetic data that can 
fool a discriminator network [13]. Even further, the recent suc-
cess of stable diffusion [14] and other models that can generate 
detailed images from text descriptions is pushing the known 
limits of the generative networks field. These advancements 
forecast an unexplored landscape of possibilities for innovative 
applications and improvements.

Autoencoders are a well-known NN model from the gener-
ative model family successfully applied in image processing 
specially to reconstruct images. They are mainly used in differ-
ent fields for nonlinear dimensionality reduction and auto-
matic feature learning [15]. Combined with convolutional 
NNs (CNNs), they can extract features from images in an 
unsupervised manner, preventing the descriptors bias intro-
duced by subjective decisions. This approach has proven use-
ful to learn complex features in a large variety of fields where 
images have a prominent role, such as animation [16], neuro-
biology [17], and medical imagery [18]. In agriculture, images 
are increasingly used for plant and crop phenotyping [19,20], 
providing relevant information to undertake genomic analysis. 
For example, Wang et al. [21] applied that DL methods in 
images obtained by mobile vehicles to extract high-throughput 
phenotypic information have served to study the genetic archi-
tecture of flowering time in wheat. Such a strategy is particu-
larly useful for traits that are difficult to describe by other 
means. It is worth mentioning that most of the important 
agronomic traits in crops are complex and vaguely described 
by simple descriptors, for they can be dissected into a complex 
combination of characteristics. This is the case of fruit quality, 

which embraces visual (fruit color, shape, and symmetry), 
organoleptic (taste, flavor, and texture), and sensory (firmness) 
aspects. Therefore, acquiring relevant data challenges genomic 
studies. In the case of traits related to fruit or plant appearance, 
the direct use of images could defeat this difficulty [22]. However, 
the difficulty of translating the visual perception provided by 
images into data or objective parameters or into measurable 
traits challenges their use in genomic studies. Thus, feeding 
whole images to CNN models appears as a good opportunity. 
Here, we present an autoencoder framework to predict fruit 
shape from known molecular data (SNPs) retrieving, as output, 
the predicted fruit shape as an image.

The objective of this work is, rather than providing a ready-
to-use model, to demonstrate that NNs can be used to predict 
and retrieve image-based phenotypes from a small set of SNPs. 
While we have applied them here to retrieve apple images with 
an SNP-predicted shape, this approach could be used to predict 
other genetically controlled visual phenotypes in other organs 
and species.

Materials and Methods

General approach
The general approach (Fig. 1) consisted of training 2 models: 
(a) an image compressor model (autoencoder), trained with 
images of apple sections; and (b) an embedding predictor, a 
model that predicts the mean compressed values, also known 
as embeddings, of a genotype based on its SNPs. Both models 
were then merged into a SNP-to-image model that we named 
GenoDrawing.

Fig. 1. Graphical abstract of the general approach. (1) The dataset of apple genotypes was split into 2 subsets, the training and the validation, preserving in each the overall 
fruit shape distribution. (2) The SNP genotypic matrix was split into 2, one per dataset. (3 and 4) Images from the training dataset were used to fit the autoencoder model. 
(5 and 6) Encoded values for each image (with 64 embeddings) were averaged by genotype and used together with the SNP matrix to train the embedding predictor 
model. (7) The resulting GenoDrawing is not a trained model but an assembly of both autoencoder decoder and embedding predictor. (8) Example of images predicted 
by GenoDrawing. RGB, red–green–blue.
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Plant materials, image acquisition, and processing
In this study, we used the apple images generated by Dujak et al. 
[23]. Briefly, the images contained from 6 to 10 apple halves 
from 356 genotypes of the apple reference collection (Apple 
RefPop) [24] grown at the Institut de Recerca i Tecnologia 
Agroalimentàries experimental field of Gimenells (Lleida, 
Spain). The apples were collected in 2019 (247 genotypes) and 
2020 (the 247 genotypes of 2019 plus 109) at ripening stage. 
Single-apple images were segmented using a fine-tuned version 
of Mask-RCNN [25] into individual images of a size of 300 × 
300 red–green–blue pixels. Apples were classified into 5 cate-
gories depending on their external fruit shape index (FSI): flat, 
flat-globose, globose, oval, and oblong [26]. FSI is defined as 
the ratio between the height and the width of the apple.

Genotypic data
Genotypic data consisted of a matrix of 303,239 SNPs from the 
356 apple genotypes extracted from data produced by Jung et al. 
[24] and prepared for the machine learning process by encod-
ing the dataset to a numerical scale (0, 0.5, and 1 representing 
AA, Aa, and aa alleles, respectively).

To train the predictor model, 2 SNP datasets were extracted 
from the matrix: 1 of 150 size- and shape-related SNPs (tSNPs) 
from literature (Table S1) and 1 of 150 randomly selected SNPs 
(rSNPs) using NumPy library [27]. The random selection of 
SNPs was renewed every time a new model was trained.

NNs models: Autoencoder and embedding predictor
The NNs were developed using PyTorch [10]. First, a convolu-
tional autoencoder network [28] was created, which reduced the 
number of the image parameters while keeping the relevant fea-
tures related to the edges and shapes of the apple sections. The 
architecture used for this convolutional autoencoder network 
consisted of 6 convolutions with kernel size of 3 × 3, set the stride 
to 2, and used a rectified linear unit activation function. The 
number of filters was progressively increased (from 16 to 128) 
through the multiple encoder layers. The architecture finished 
with 3 linear layers with a leaky rectified linear unit activation 
and sizes of 8,192, 4,096, and 2,048 and with a final linear layer 
of 64 units with sigmoid activation (Fig. S1, encoder). The decoder 
followed the inverse structure with a final sigmoid activation in 
the last layer (Fig. S1, decoder). The model was compiled using 
the perceptual loss of the Visual Geometry Group network [29] 
as the loss function, and the stochastic gradient descent algo-
rithm [30] was used as optimizer. Training was performed for 
35 epochs, over individual apple cuts of the training dataset.

The SNPs and embedding values of each genotype in the 
training dataset were used to train a 2-layer model to generate 
an embedding predictor model. This model consisted of (a) a 
linear layer of 300 units with sigmoid activation, which received 
as input the 150 SNPs; and (b) a 64-unit linear layer with sigmoid 
activation, which connected with the 300-unit layer and served 
later as a connection to the decoder when the model was fully 
trained (Fig. S1, predictor). The embedding predictor was then 
compiled using mean absolute error (MAE) as the loss function 
and the stochastic gradient descent algorithm as optimizer 
(learning rate of 0.05 with scheduler to reduce on plateau) and 
then trained for 1,000 epochs with an early stopper watching for 
overfitting symptoms [31]. The resulting model was attached to 
the decoder part of the autoencoder model generating a SNP-
to-image model, the GenoDrawing (Fig. S1, GenoDrawing). No 
end-to-end training was performed at this stage.

Embedding predictor target dataset generation
To generate a target dataset for the embedding predictor model, 
we utilized a trained autoencoder to reduce the dimensionality 
of each image to a vector of 64 values. Subsequently, each vector 
representing an image was grouped by genotype, and a mean 
vector was computed. This mean vector represented the target 
for the embedding predictor models and was also utilized in 
the decoder to produce a mean image representing the mean 
image for the genotype (Fig. S2). The resulting dataset of gen-
erated images was utilized in the evaluation of the metrics by 
estimating their FSI and their shoulder ratio (SR), which was 
calculated as the ratio between the width at the most top and 
bottom points of the apple.

Computational specifications
All the training was developed in a HP Workstation with an 
Intel Xeon W-2265 CPU, 64 GB of random-access memory and 
a NVIDIA Quado RTX 4000 8-GB graphics processing unit. 
The autoencoder training took, in average, 5 h, while the 
embedding predictors with 150 inputs took minutes. The cost-
liest in time was the embedding predictors using all the SNP 
dataset as it took around 4 h each, which led to around 60 h in 
total for 15 models. Times varied in function of early stopping 
activating sooner or later.

Results

Resulting framework
The general approach of GenoDrawing is described in Fig. 1. 
Images were separated into a training and a validation dataset 
conserving similar shape typologies distributions (Fig. 1, 1). 
The training dataset contained the 90% of the images (10,271 
of 320 genotypes). The rest (1,340 of 36 genotypes) were used 
for validation (Fig. 1, 2). The autoencoder model was fitted with 
the training dataset to ultimately produce vectors of 64 embed-
ding values per image (Fig. 1, 3 and 4). These vectors were used 
to generate a 10,271 × 64 matrix, which was then reduced to a 
320 × 64 matrix using the mean embedding values per geno-
type. The decoder function of the autoencoder model was 
then used in the 320 × 64 matrix to retrieve the average image 
for each of the 320 genotypes. The same process was fol-
lowed for the validation dataset without retraining the image 
compressor.

Image and genotypic datasets (Fig. 1, 5) were used for training 
and validating the embedding predictor model. We used 2 gen-
otypic datasets: one consisted in the whole matrix of 303,239 
SNPs and the other in a subset of 150 tSNPs. Random subsets of 
150 SNPs, renewed in each interaction to avoid possible bias pro-
duced by a specific SNP selection, were extracted from the whole 
matrix (Fig. 1, 6). The decoder section of the autoencoder and the 
embedding predictor were assembled into the GenoDrawing to 
retrieve the predicted image (Fig. 1, 7 and 8).

Autoencoder and embedding predictor training
To reduce the complexity of the apple images, we used the auto-
encoder network, which was able to compress (encode) each 
image into 64 dimensions (embeddings), number that was 
selected during experimentation; we observed that when using 
a low number of embeddings, the decoded images lost crucial 
information, while when using values larger than 64, the visual 
quality was not substantially improved, and the prediction 
target size was expanded, which might be detrimental. The 
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reconstructed (decoded) images from the 64 embeddings main-
tained, in a great measure, the shape aspect of the original image, 
while the flesh color and lobule depth were not reproduced (Fig. 
2). The selected dimensionality allowed for the preservation of 
important information in a small dimensional space, which 
served as the target for prediction. During the autoencoder 
training, the perceptual loss, which indicates the resem-
blance of the reconstructed image to the original, improved 
consistently from around 0.15 to 0.09 along the 35 epochs 
(Fig. S3). The mean encoder values per genotype were used 
together with SNP data to train the embedding predictor and 
reconstruct the apple section images. The embedding predictor 
was trained through the number of epochs needed until an 
early stopper was activated. For all the SNP datasets tested, a 
slow decrement in the MAE was observed through the various 
iterations of training on the validation dataset, with a stagna-
tion that arrived earlier or later depending on the number of 
SNPs used. There was no evidence of overfitting.

Comparing the impact of tSNPs  
and rSNPs on embedding prediction models  
for GenoDrawing
To compare the accuracy of the embedding prediction model 
using targeted or random SNPs, we trained 100 models for each 
case. Using tSNPs consistently led to lower MAE values (t test, 
P value of 3.4 × 10−108). On average, the MAE values obtained 
using tSNPs was 0.0864 with a standard deviation of 0.0034. 
When rSNPs were used, the average MAE was 0.0944 with a 
standard deviation of 0.0017 (Fig. S4).

The best 2 embedding predictors among the 100 previously 
described (MAE of 0.0857 and 0.0889 for the targeted and 
random SNP datasets, respectively) were used along with 
the decoder model to generate the predicted images and, even-
tually, test the accuracy of GenoDrawing. Mean decoded and 
predicted images were analyzed to determine the FSI and the 

SR (Fig. S5). Deviation of FSI and SR values with the tSNP 
dataset was lower, with the MAE of 0.0386 and 0.0317 for the 
FSI and SR, respectively, compared to the MAE of 0.0651 and 
0.0493 for the same to metrics in the rSNPs dataset. To deter-
mine the quality threshold for the MAE values, the mean (μ) 
and standard deviation (σ2) of the FSI and SR of each of the 
36 genotypes of the validation dataset were used to produce 
10,000 datasets of 36 samples each, following a N(μ,σ2) distri-
bution. FSI and SR values of such samples were compared with 
the FSI and SR values of the images produced by GenoDrawing. 
The resulting MAE superior boundary was established at 0.075 
with a standard deviation of 0.0084 for the FSI and at 0.0529 
with a standard deviation of 0.0054 for the SR. Given that 
these boundary values exceed those produced by both rSNP- 
and tSNP-derived models, it may be concluded that the pre-
dictions are not merely the result of random sampling from the 
original distribution.

Once the nonrandomness of the models had been con-
firmed, the distributions corresponding to both the rSNP- and 
tSNP-based versions of the embedding prediction were com-
pared to the decoded means and the original data distributions 
for each genotype in the validation dataset (Fig. 3). Wasserstein 
distances between the distributions (Table S2) show that tSNP 
models generate FSI distributions with values closer to the 
ones of the decoded and genotype distributions (distances of 
0.0209 and 0.0259, respectively) than the rSNP models (dis-
tances of 0.0469 and 0.0331, respectively). Similarly, distances 
between the decoded and the means of the SR-predicted dis-
tributions were lower when using targeted SNPs (0.0184 for 
tSNPs compared with 0.0247 for rSNPs). In addition, a small 
difference between the distribution of the decoded mean 
image and the original images was observed. Specifically, the 
Wasserstein distance values between the decoded mean dis-
tribution and the original image distributions were relatively 
small for both the FSI attribute (0.0144) and the SR attribute 
(0.01748).

Fig. 2. (Left) Original apple section. (Right) Output given by the autoencoder for the correspondent apple.
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To further understand the limitations of the proposed model, 
we classified the autoencoder and predicted images on the basis 
of the FSI into 5 categories (flat, flat-globose, globose, oblong, 
and oval) [26]. The success in class assignation was assessed 
using the accuracy and F score metrics and plotted in a confu-
sion matrix (Fig. S6). Both metrics were consistently lower for 
the tSNP-based version with an accuracy of 0.61 and F score 
of 0.59 against an accuracy of 0.39 and F score of 0.34 for the 
random version. Furthermore, the rSNP-based version only 
predicted 2 shape categories, belonging most to the flat type, 
while the targeted version was able to predict fruits of 3 
fruit classes, closer to the ground-truth sample. None of them 
was able to produce images belonging to the oblong and oval 
categories.

Effect of adding nonshape-related markers on the 
embedding predictor model accuracy
To investigate the effect of increasing the number of markers 
selected without knowing the biological relevance, we added 
to the tSNP dataset an increasing number of SNPs in 9 steps 
up to a total of 150, 300, 1,650, 4,650, 10,150, 20,150, 50,150, 
100,150, and 300,150. We used a similar approach with the 
random-selected SNPs, increasing the size of the selection at 
each step. For each of these steps and datasets, 15 models were 
trained. The embedding predictor models with only 150 tSNPs 
were generally more effective in achieving a low MAE com-
pared to models that include additional SNPs. The exception 
was observed when using 300,150 targeted versions, where 3 
outliers showed lower MAEs than their random selection coun-
terparts. Notably, a unique case was observed where a targeted 

version consisting of 300 SNPs achieved the lowest observed 
MAE of 0.0835 (Fig. 4).

Discussion

Evaluation of autoencoder performance,  
loss function selection, and embedding  
predictor structure
In this study, we used an autoencoder network to simplify the 
complexity of the apple images into 64 embeddings. This num-
ber of embeddings was deemed sufficient to account for small 
variations in the images while circumventing the complexity 
associated with adjusting a large number of embeddings to a 
reduced dataset of SNPs. Although changes in the number of 
embeddings can produce different outcomes, given the scope 
of this study, we selected the number that aligned better with 
our objectives. The images produced from the embeddings 
successfully captured a reliable and straightforward representa-
tion of the apples, effectively reproducing the original image 
structure. Nevertheless, certain features, such as lobule depth 
and flesh color, were not accurately represented, likely because 
of the sparsity of the embedding space and the difficulty faced 
by a simple autoencoder network in generating photorealistic 
images. As the primary focus of this study was on shape, the 
autoencoder structure was deemed appropriate for the task. 
However, future studies that aim to capture a wider range of 
attributes may benefit from utilizing a different structure to 
better accomplish the reconstruction task.

With respect to the loss function utilized in our study, we eval-
uated the mean square error, structural similarity index measure 

Fig. 3. The distribution plots for 2 different traits: FSI on the left and SR on the right. The distributions were generated using the GenoDrawing approach with the best-scoring 
version of the embedding predictor for both tSNPs (represented in blue) and rSNPs (represented in orange). For comparison, the distributions of the validation dataset were 
also plotted using the mean images (represented in green) and the original images (represented in purple).
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(SSIM)-based metrics, and perceptual loss (Fig. S7). We selected 
the perceptual loss, given the well-proved adequacy to the recon-
struction task [29] and the results provided. Although SSIM-based 
metrics, such as multiscale SSIM and  complex wavelet SSIM, are 
robust in terms of comparing image structures, they often overlook 
details [32]. The images reconstructed were similar to the original 
ones in terms of shape, while they were less alike regarding other 
visual aspects as fruit conicity. Furthermore, mean square error 
tendency to generate blurry boundaries between figures [33] 
proved to be highly detrimental to the comparison of image 
shapes, preventing a proper examination of the data.

The embedding predictor structure used in this study was 
relatively simple, consisting of 2 single layers with 300 units 
each and sigmoid activation. This approach was selec ted fol-
lowing an examination of several architectures, including 

deeper models with skip connections, convolutions, and direct 
models, on the 150 SNP version predictions. The simplicity 
of this approach allowed for the exploration of different input 
sizes while minimizing training time. For larger datasets, how-
ever, more complex architectures capable of studying sequences 
while retaining position relevance could prove beneficial. Never-
theless, the primary goal of this study was to assess the feasi-
bility of this approach and the impact of selecting the appropriate 
SNPs relevant to the features studied.

Using the mean embedding as a representation of 
the phenotype
One of the primary challenges associated with utilizing an auto-
encoder is determining which information is being encoded 

Fig. 4. Embedding predictor models with increasing size represented by their MAE. Lower in the y axis means less error and, therefore, a better model. Two versions of the 
models were observed: a targeted version that always included 150 SNPs relevant to shape and random markers, denoted by blue color, and a random version that involved 
a fully random selection of markers, denoted by orange color. Fifteen models were trained for each of the different sizes and versions.
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in the embedding space. In our study, a relevant question that 
arose was whether the mean of the embeddings represented 
the mean of the images corresponding to a specific genotype. 
To evaluate this, we compared the distribution of both for the 
FSI and SR metrics. We found out that the FSI distributions 
were highly similar both in distributions and images; however, 
differences were observed in the SR (Fig. 3) with Wasserstein 
distances larger on the SR than in the FSI (0.0178 versus 
0.1444). While no significant difference were obtained with a 
Kolmogorov–Smirnov test, P values were lower for the SR 
(0.34) than for the FSI (0.88) that might hint to what can be 
observed in the validation dataset, a total loss of the symmetry 
in the decoding and the averaging process. An asymmetric 
apple that is cut in 2 halves will produce 2 asymmetric mirror 
images, which will be then merged in a symmetric mean image. 
This issue could be tackled in the future by removing from the 
dataset one of the halves of each apple.

Relevance of SNP selection in genome  
prediction models
Genome prediction models are typically founded on dense 
SNP data. Nevertheless, generating and managing large SNP 
datasets remain a challenge for small- to medium-sized breed-
ing companies, despite the relatively low cost of high-throughput 
genotyping methods. Strategies such as genotyping by sequenc-
ing have been developed to reduce genotyping costs [34]; 
however, the use of smaller arrays would be more conducive 
to the implementation of this methodology. To this end, we 
reduced the genotyping array to a small array of 150 SNPs 
that we found to be substantial for size and shape traits. In 
this work, we discarded predicting fruit size since the images 
to feed the model were an average of all the images of a geno-
type collected over 3 years, and Jung et al. [35] found low 
between year correlations of some of the attributes. To eval-
uate the adequacy of reducing the number of SNPs for the 
predictions, we tested the model with both random and selected 
SNPs and consistently observed improved results in predict-
ing shape when using the selected SNPs. This confirms the 
association of most of the selected SNPs with apple shape 
(Fig. S4). However, we also identified a rare case in which the 
addition of random SNPs to the selected SNPs led to better 
results, leading us to believe that our selection may be missing 
some shape-relevant SNPs. The inclusion of relevant SNPs 
is crucial for accurate predictions, which is consistent with 
the biological interpretation of SNP information. In theory, 
the presence of the relevant SNPs should be sufficient for 
making predictions, regardless of the addition of random 
SNPs. Our results demonstrate a consistent improvement in 
performance when the relevant SNPs are included in the input, 
with a decrease in performance as the input size increases. 
This decrease in performance could be attributed to the sim-
plicity of the embedding prediction structure used in our 
study. As previously mentioned, a more complex architec-
ture may be necessary for larger inputs to better extract rele-
vant information, which can be addressed through architecture 
improvements.

Evaluating embedding predictor performance using 
FSI and SR metrics in GenoDrawing
Two metrics were used to evaluate the similarity in fruit shape 
between the mean image generated by encoding all images for 

a particular genotype and their prediction. FSI was used as a 
reliable measure of the general shape of the fruit, while the SR 
was used to capture the conicity of the apple. However, it was 
noted that the SR was not adequately captured using the mean 
embedding, limiting the interpretability of the results obtained 
but still providing valuable insight into the challenges of using 
this model to predict asymmetric metrics. Conversely, the FSI 
metric was found to be well suited to the task. The results, as 
shown in Fig. 3, revealed that the random embedding predictor 
was highly focused on a limited range of variability for predic-
tions. This indicated that the embedding predictor consistently 
produced similar images to minimize the error but did not 
effectively learn to solve the task. In contrast, the targeted ver-
sion produced a better-distributed range of predictions, which 
could achieve higher FSI values and result in better approxi-
mations of the image production task. This was further sup-
ported by the categorization of predicted images into 5 shape 
categories (Fig. S6) using FSI scores, which revealed that the 
random version only predicted in 2 categories (flat and flat- 
globose), while the targeted version predicted in 3 categories 
(from flat to globose). Overall, these findings suggest that 
GenoDrawing can learn the task effectively when relevant 
markers for shape are provided.

Limitations
By estimating the mean shape appearance for a genotype, we 
aimed to cover the variability within genotype, but apples can 
be very influenced by environmental effect, leading to a wide 
range of phenotypes within the same individual [35]. Although 
most of the genotypes counted with multiple biological repli-
cates and 2-year imaging, this is one of the biggest challenges 
faced in genomic prediction. Furthermore, the overrepresenta-
tion of flat-globose apples limits the capacity of the model 
trained, forcing it to be biased toward this category (Fig. S8). 
Removing the number of examples from this category has been 
considered, but this considerably would limit the size of the 
dataset in term of number of genotypes that might hurt the 
learning process more than helping it. For traits with such a 
low separation between classes a larger genotype dataset, includ-
ing more extreme phenotypes may help to improve accuracy 
in future studies.

Acknowledgments
We thank C. Dujak for facilitating access to the apple image 
dataset.
Funding: F.J.-R. is recipient of grant PRE2019-087427 funded 
by MCIN/AEI/10.13039/501100011033 and by “ESF Investing 
in your future”. This research was supported by project PID2021- 
128885OB-I00 funded by MCIN/AEI/10.13039/501100011033 
and by “ERDF A way of making Europe”. This project has 
received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement 
no. 817970 (INVITE). We acknowledge support from the CERCA 
Programme (“Generalitat de Catalunya”), and the “Severo Ochoa 
Programme for Centres of Excellence in R&D” 2016–2019 
(SEV-2015-0533) and 2020–2023 (CEX2019-000902-S) both 
funded by MCIN/AEI/10.13039/501100011033.
Author contributions: The work was conceived and designed 
by F.J.-R. and M.J.A. F.J.-R. performed the experiments. D.R. 
and J.A.B. provided intellectual support. F.J.-R. and M.J.A. 
wrote the manuscript. All authors revised the manuscript.

https://doi.org/10.34133/plantphenomics.0113


Jurado-Ruiz et al. 2023 | https://doi.org/10.34133/plantphenomics.0113 8

Competing interests: The authors declare that they have no 
competing interests.

Data Availability
The code repository including notebooks and models with their 
trained weights can be found in the following GitHub reposi-
tory: https://github.com/Fedjurrui/GenoDrawing. The images 
were produced in Dujak et al. [23], from where the images can 
be obtained under request.

Supplementary Materials
Figs. S1 to S8 
Tables S1 and S2 

References

 1. Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, 
Mushtaq M, Jain N, Singh PK, et al. Genomic selection in the 
era of next generation sequencing for complex traits in plant 
breeding. Front Genet. 2016;7:221.

 2. Zhao Y, Mette MF, Gowda M, Longin CFH, Reif J. Bridging 
the gap between marker-assisted and genomic selection of 
heading time and plant height in hybrid wheat. Heredity. 
2014;112(6):638–645.

 3. Zhang H, Yin L, Wang M, Yuan X, Liu X. Factors affecting the 
accuracy of genomic selection for agricultural economic traits 
in maize, cattle, and pig populations. Front Genet. 2019;10:189.

 4. Iwata H, Ebana K, Uga Y, Hayashi T. Genomic prediction of 
biological shape: Elliptic Fourier analysis and kernel partial 
least squares (PLS) regression applied to grain shape prediction 
in rice (Oryza sativa L.). PLoS One. 2015;10(3):e0120610.

 5. Pérez-Enciso M, Zingaretti LM. A guide on deep learning for 
complex trait genomic prediction. Genes. 2019;10(7):553.

 6. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. 
Deep learning for computer vision: A brief review. Comput 
Intell Neurosci. 2018;2018:7068349.

 7. Osval AM-L, Abelardo M-L, Tuberosa R, Maccaferri M, 
Sciara G, Ammar K, Crossa J. Multitrait, multi-environment 
genomic prediction of durum wheat with genomic best linear 
unbiased predictor and deep learning methods. Front Plant Sci. 
2019;10:1131.

 8. van Klompenburg, Kassahun A, Catal C. Crop yield prediction 
using machine learning: A systematic literature review. 
Comput Electron Agric. 2020;177:105709.

 9. Abdollahi-Arpanahi R, Gianola D, Peñagaricano F. Deep 
learning versus parametric and ensemble methods for genomic 
prediction of complex phenotypes. Genet Sel Evol. 2020;52:12.

 10. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,  
Killeen T, Lin Z, Gimelshein N, Antiga L, et al. PyTorch: An 
imperative style, high-performance deep learning library. 
Paper presented at: NIPS'19. Proceedings of the 33rd 
International Conference on Neural Information Processing 
Systems; 2019 December 8; Vancouver, Canada.

 11. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,  
Corrado G, Davis A, Dean J, Devin M, et al. TensorFlow: 
Large-scale machine learning on heterogeneous systems. 
ArXiv. 2016. https://doi.org/10.48550/arXiv.1603.04467.

 12. Harshvardhan GM, Gourisaria MK, Pandey M, Rautaray SS. 
A comprehensive survey and analysis of generative models in 
machine learning. Comput Sci Rev. 2020;38:8026–8037.

 13. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,  
Ozair S, Courville A, Bengio Y. Generative adversarial 
networks. Commun ACM. 2020;63:139–144.

 14. Rombach R, Blattmann A, Lorenz D, EsserP, Ommer B. High-
resolution image synthesis with latent diffusion models. Paper 
presented at: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition; 2022; New Orleans, 
LA, USA.

 15. Pinaya WHL, Vieira S, Garcia-Dias R, Mechelli A. 
Chapter 11-Autoencoders. In: Mechelli A, Vieira S, editors. 
Machine learning. Methods and applications to brain disorders. 
Cambridge (MA): Academic Press; 2020. pp. 193–208.

 16. Mourot L, Hoyet L, Le Clerc F, Schnitzler F, Hellier P. A 
survey on deep learning for skeleton-based human animation. 
Comput Grap Forum. 2022;41(1):122–157.

 17. Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, 
Christensen A, Clopath C, Costa RP, de Berker, Ganguli S, et al. 
A deep learning framework for neuroscience. Nat Neurosci. 
2019;22(11):1761–1770.

 18. Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, Chen J, 
Wang R, Zhao H, Chong Y, et al. Yuedong Yang “deep learning 
enables accurate diagnosis of novel coronavirus (COVID-19) 
with CT images”. IEEE/ACM Trans Comput Biol Bioinform. 
2021;18(6):2775–2780.

 19. Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii R,  
Melgani F, Melgani F. Computer vision-based phenotyping 
for improvement of plant productivity: A machine learning 
perspective. GigaScience. 2018;8(1):giy153.

 20. Jangra S, Chaudhary V, Yadav RC, Yadav NR. High-throughput 
phenotyping: A platform to accelerate crop improvement. 
Phenomics. 2021;1(2):31–53.

 21. Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J. High-
throughput phenotyping with deep learning gives insight 
into the genetic architecture of flowering time in wheat. 
GigaScience. 2019;8(11):giz120.

 22. Saríc R, Nguyen VD, Burge T, Berkowitz O, Trtílek M, 
Whelan J, Lewsey MG, Čustović E. Applications of 
hyperspectral imaging in plant phenotyping. Trends Plant Sci. 
2022;27(3):301–315.

 23. Dujak C, Jurado-Ruiz F, Aranzana AM. Comprehensive 
morphometric analysis of apple fruits and weighted class 
assignation using machine learning. Research Square. 2 August 
2023. https://doi.org/10.21203/rs.3.rs-2860631/v1.

 24. Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, 
Denancé C, Dujak C, Durel C-E, Font C, Cantin CM, et al. The 
apple REFPOP—A reference population for genomics-assisted 
breeding in apple. Hort Res. 2020;7(1):189.

 25. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 
Paper presented at: 2017 IEEE International Conference on 
Computer Vision; 2017 October 22–29; Venice, Italy.

 26. Lateur M, Dapena E, Szalatnay D, Gantar ME, Guyader A, 
Hjalmarsson I, Höfer M, Ikase L, Kellerhals M, Lacis G, 
et al. ECPGR characterization and evaluation descriptors for 
apple genetic resources: Apple (Malus X Domestica). European 
Cooperative Programme for Plant Genetic Resources; 2022. 
https://www.ecpgr.cgiar.org/resources/latest-news/news-detail/
ecpgr-characterization-and-evaluation-descriptors-for-apple-
genetic-resources-published.

 27. Harris CR, Jarrod Millman K, van der Walt SJ, Gommers R, 
Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ,  
et al. Array programming with NumPy. Nature.  
2020;585.

https://doi.org/10.34133/plantphenomics.0113
https://github.com/Fedjurrui/GenoDrawing
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/https://doi.org/10.1016/B978-0-12-815739-8.00011-0
https://doi.org/10.21203/rs.3.rs-2860631/v1
https://www.ecpgr.cgiar.org/resources/latest-news/news-detail/ecpgr-characterization-and-evaluation-descriptors-for-apple-genetic-resources-published
https://www.ecpgr.cgiar.org/resources/latest-news/news-detail/ecpgr-characterization-and-evaluation-descriptors-for-apple-genetic-resources-published
https://www.ecpgr.cgiar.org/resources/latest-news/news-detail/ecpgr-characterization-and-evaluation-descriptors-for-apple-genetic-resources-published


Jurado-Ruiz et al. 2023 | https://doi.org/10.34133/plantphenomics.0113 9

 28. Goodfellow I, Bengio Y, Courville A. Deep learning. The MIT 
Press; 2016.

 29. Zhang R, P. Isola, Efros AA, Shechtman E, Wang O. The 
unreasonable effectiveness of deep features as a perceptual 
metric. Paper presented at: IEEE/CVF Conference on 
Computer Vision and Pattern Recognition; 2018 June 18–23;  
Los Alamitos, CA, USA.

 30. Robbins H, Monro S. A stochastic approximation method.  
Ann Math Stat. 1951; 22: 400–407.

 31. Raskutti G, Wainwright MJ, Yu B. Early stopping for non-
parametric regression: An optimal data-dependent stopping 
rule. J Mach Learn Res. 2014;15:335–366.

 32. Temel D, AlRegib G. Image quality assessment and color 
difference. Paper presented at: 2014 IEEE Global Conference 

on Signal and Information Processing; 2014 December 3–5; 
Atlanta, GA, USA.

 33. Wang Z. Bovik A.C.: Mean squared error: Love it or leave it? A 
new look at signal Fidelity measures. IEEE Signal Process Mag. 
2009;26(1):98–117.

 34. Robert JE, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, 
Buckler ES, Mitchell SE. A robust, simple genotyping-by-
sequencing (GBS) approach for high diversity species. Plos 
One. 2011;6(5):e19379.

 35. Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, 
Guerra W, Al-Rifaï M, Lewandowski M, Sanin N,  
Rymenants M, et al. Genetic architecture and genomic 
predictive ability of apple quantitative traits across 
environments. Hort Res. 2022;9:uhac028.

https://doi.org/10.34133/plantphenomics.0113
https://doi.org/10.1214/aoms/1177729586

	GenoDrawing: An Autoencoder Framework for Image Prediction from SNP Markers
	Introduction
	Materials and Methods
	General approach
	Plant materials, image acquisition, and processing
	Genotypic data
	NNs models: Autoencoder and embedding predictor
	Embedding predictor target dataset generation
	Computational specifications

	Results
	Resulting framework
	Autoencoder and embedding predictor training
	Comparing the impact of tSNPs and rSNPs on embedding prediction models for GenoDrawing
	Effect of adding nonshape-related markers on the embedding predictor model accuracy

	Discussion
	Evaluation of autoencoder performance, loss function selection, and embedding predictor structure
	Using the mean embedding as a representation of the phenotype
	Relevance of SNP selection in genome prediction models
	Evaluating embedding predictor performance using FSI and SR metrics in GenoDrawing
	Limitations

	Acknowledgments
	Data Availability
	Supplementary Materials
	References




