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Transmission of severe acute respiratory syndrome 
coronavirus 2 from humans to animals: is there a risk of 
novel reservoirs?
Leira Fernández-Bastit1,2, Júlia Vergara-Alert1,2,* and  
Joaquim Segalés1,3,*

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) is a zoonotic virus able to infect humans and multiple 
nonhuman animal species. Most natural infections in 
companion, captive zoo, livestock, and wildlife species have 
been related to a reverse transmission, raising concern about 
potential generation of animal reservoirs due to human–animal 
interactions. To date, American mink and white-tailed deer are 
the only species that led to extensive intraspecies transmission 
of SARS-CoV-2 after reverse zoonosis, leading to an efficient 
spread of the virus and subsequent animal-to-human 
transmission. Viral host adaptations increase the probability of 
new SARS-CoV-2 variants’ emergence that could cause a 
major global health impact. Therefore, applying the One Health 
approach is crucial to prevent and overcome future threats for 
human, animal, and environmental fields.
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Introduction
Major viral outbreaks in the last two decades involved 
coronaviruses (CoVs) causing epidemics or pandemics: the 
severe acute respiratory syndrome (SARS, 2002–2003), the 

Middle East respiratory syndrome (MERS, 2012–present), 
and the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) (2019–present) [1]. Although SARS-CoV-2 
is not considered as virulent as SARS-CoV and MERS- 
CoV, its highly transmission capability has prompted a 
rapid spread through the world, triggering the ongoing 
Coronavirus disease 2019 (COVID-19) pandemic [1]. 
SARS-CoV-2 was reported for the first time in late 2019 in 
China and, as on August 24th, 2023, more than 769 million 
human infections and over 6.9 million deaths have been 
officially reported (World Health Organisation, URL: 
https://covid19.who.int/).

CoVs are a family of viruses that have constantly 
crossed the species barriers, expanding their host 
range. In fact, all human CoVs are zoonotic viruses 
that originated in other mammalian hosts such as bats, 
mice, or livestock [1]. As in the case of SARS-CoV and 
MERS-CoV, there are evidences pointing out to bats 
as the animal origin of SARS-CoV-2 since the highest 
genome sequence homology has been found in CoVs 
isolated from Rhinolophus spp. bats (96.1% for 
RATG13 and 96.8% for BANAL-52) [2,3]. The ge
netic divergence (≈4%) between the identified bat- 
CoVs and SARS-CoV-2 supports the potential con
tribution of an intermediate host into the spillover to 
human population, although no animal species has 
been found in such respect yet [4]. Importantly, the 
efforts to assess potential intermediate host and an
imal reservoirs have scaled up since SARS-CoV-2 has 
continuously exhibited its capability to infect a huge 
variety of animal species [4].

Animal (domestic and wildlife) and human interactions 
occur daily in many different scenarios, a fact that in
creases the possibility of zoonotic and reverse zoonotic 
(RZ) viral transmission [5]. In consequence, the spread 
of the virus has facilitated viral evolution and the ap
pearance of new variants of SARS-CoV-2 [6]. To date, 
five major variants of concern (VOCs: Alpha [B.1.1.7], 
Beta [B.1.351], Gamma [P.1], Delta [B.1.617.2], and 
Omicron [B.1.1.529]) have been recognized for 
their higher capability of transmission, virulence, and/or 
increased immune escape compared with original ones. 
Currently, there are no SARS-CoV-2 variants considered 
as VOC (European Centre for Disease Prevention and 

]]]] 
]]]]]]

www.sciencedirect.com Current Opinion in Virology 2023, 63:101365

http://www.sciencedirect.com/science/journal/18796257
mailto:joaquim.segales@irta.cat
https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/106G96Q6CKN
https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/106G96Q6CKN
https://doi.org/10.1016/j.coviro.2023.101365
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://covid19.who.int/
https://covid19.who.int/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2023.101365&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2023.101365&domain=pdf


Control, URL: https://www.ecdc.europa.eu/en/covid-19/ 
variants-concern).

Considering the significant role of animals in the origin, 
transmission, and as potential new reservoirs of SARS- 
CoV-2, the objective of this review is to present and 
discuss the complex framework of SARS-CoV-2 reverse 
zoonoses and their potential consequences.

Susceptibility of animals to severe acute 
respiratory syndrome coronavirus-2
SARS-CoV-2 uses the receptor-binding domain (RBD) 
of its spike (S) protein to recognize the angiotensin- 
converting enzyme-2 (ACE2) host cell receptor to 
mediate viral infection [7]. Upon SARS-CoV-2 binding 
to the ACE2, the transmembrane serine protease 2 
(TMPRSS2) cleaves the S protein allowing the fusion of 
viral and cellular membranes facilitating viral entry [7]. 
Previous studies demonstrated that presence, tropism, 
and expression levels of the ACE2 receptor determine 
the susceptibility and host range of SARS-CoV-2, while 
TMPRSS2 is not a limiting factor for viral entry and 
infection [8–10]. Comparative genomic analyses be
tween the ACE2 receptor of humans and nonhuman 
animal species evidenced a highly conserved sequence 
among mammals, supporting a broad host range of 
SARS-CoV-2 [8,11]. Importantly, 25 amino acids of the 
ACE2 have been identified as critical determinants for 
SARS-CoV-2 binding, with six of those residues (Ser19, 
Lys26, Thr27, Asp30, Leu79, and Met82), being highly 
associated with viral host susceptibility [8].

Accordingly, several domestic and wildlife animal spe
cies confirmed SARS-CoV-2 susceptibility under ex
perimental conditions (Figure 1), being of particular 
concern those species in close contact with humans, such 
as companion animals [12]. Cats, ferrets, and hamsters 
have exhibited high susceptibility to SARS-CoV-2, 
whereas dogs demonstrated low susceptibility after ex
perimental challenge [13–16]. Likewise, a higher risk of 
infection in cats than in dogs was already predicted by 
previous in silico studies based on the comparison of the 
critical binding residues of their ACE2 sequences to 
those from the ACE2 of humans [17]. However, com
putational studies do not always agree with in vivo ex
periments; as an example, very low binding affinity was 
predicted between the ACE2 of ferrets and the SARS- 
CoV-2 RBD, considering them within the group of low 
risk of infection [17,18]. This apparent higher suscept
ibility of cats and ferrets could be partially explained by 
the higher ACE2 levels in the upper respiratory tract 
(RT) compared with the ACE2 low levels in dogs, which 
may be related with a reduced viral replication in the 
nasal turbinates of the latter species [10,19]. Regarding 
hamsters, although they exhibited low ACE2 levels in 
the RT, the high ACE2–RBD-binding affinity might 

explain the high SARS-CoV-2 susceptibility [10]. Alto
gether, it supports viral intraspecies transmissibility in 
cats, ferrets and hamsters, but not in dogs [15,16]. Even 
though none of these species showed significant clinical 
signs associated with the SARS-CoV-2 experimental 
inoculation, except for hamsters, which developed 
moderate–severe weight loss, which would be similar to 
the moderate–severe disease course of human COVID- 
19 patients [13,15,16]. In this matter, other members of 
the family Mustelidae, such as minks, develop severe 
respiratory disease, probably attributed to the presence 
of the ACE2 not only in the upper but also in the lower 
RT [10,20]. On the other hand, livestock species (cattle, 
sheep, and goat), which were predicted within the group 
of medium risk of infection, demonstrated very limited 
susceptibility to SARS-CoV-2 and its different VOCs 
[18,21–24]. Regarding pigs, several investigations de
monstrated that they are not susceptible to SARS-CoV-2 
consistent with predictive studies [16,17,25], although 
Pickering et al. [26] suggested a very low susceptibility 
to SARS-CoV-2. Last, several wild animal species also 
exhibited SARS-CoV-2 susceptibility such as the white- 
tailed deer (WTD), rhesus macaque, tree shrew, raccoon 
dog, and the fruit bat [27–30]; some of them were able to 
transmit the virus to the contact animals (Figure 1). 
Besides, the wild-type (WT) mice, which were not 
susceptible to SARS-CoV-2 ancestral variants, have ex
hibited certain susceptibility to Alpha, Beta, Gamma, 
and Omicron VOCs (Figure 1) [31]. In fact, some authors 
evidenced that the Omicron variant might not have 
originated from humans directly but may have been 
transmitted from murine species to humans [32,33].

Natural infections and reverse zoonosis 
transmission
Natural infections of SARS-CoV-2 in domestic and wildlife 
animals have also been reported almost since the begin
ning of the COVID-19 pandemic. Indeed, according to the 
World Organization Animal Health (WOAH) (URL: 
https://www.woah.org/en/crossing-the-species-barriers- 
covid-19-an-example-of-reverse-zoonosis), the COVID-19 
(understood basically as SARS-CoV-2 infection, not ne
cessarily with a clinical outcome) was the 3rd most reported 
animal disease in 2021. This was probably due to the 
systematic efforts in detecting evidence of SARS-CoV-2 
infection in animals. As per 24 August 2023, the WOAH 
has reported 775 SARS-CoV-2 outbreaks in animals, in
cluding 26 species in 36 countries [34]. Besides, an open- 
access database summarizing SARS-CoV-2 events in ani
mals published by the Complexity Science Hub (Vienna, 
Austria) (URL: https://vis.csh.ac.at/sars-ani/) indicates at 
present a total of 887 outbreaks, including 34 species in 39 
countries. Importantly, most of the SARS-CoV-2 animal 
infections have been associated with close contact with 
SARS-CoV-2-infected humans and, thus, pointing out to 
RZ transmission events (Figure 2).
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Companion animals
The first known SARS-CoV-2 infection in animals was 
described in Hong Kong on February 2020 in an asymp
tomatic dog from a COVID-19-positive household, and 
from which a RZ was evidenced by genetic sequencing 
and epidemiological analyses [35]. Thereafter, SARS-CoV- 

2 infections in companion animals, mainly cats and dogs 
but also ferrets and hamsters, have been constantly re
ported worldwide and mainly related to a human–animal 
contact [36–46]. Interestingly, large-scale studies per
formed in different countries (e.g. USA, China, Italy, 
Switzerland, Spain, and France) demonstrated a higher risk 

Figure 1  
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Susceptibility degree of companion animals, livestock, wildlife, and laboratory animals to SARS-CoV-2 under experimental conditions. Susceptible 
animals (green column), low-susceptible animals (purple column), and very-low or no susceptible animals (red column) are shown separately. WT 
mice, which are represented twice, are not susceptible to the ancestral variant (virus in green color) but to the Alpha, Beta, Gamma, and Omicron (virus 
in red color) ones. The red arrows indicate the animal species with the ability to transmit SARS-CoV-2 to cohoused animals. Figure is created with 
BioRender.com.  

SARS-CoV-2 and risk of novel reservoirs Fernández-Bastit, Vergara-Alert and Segalés 3

www.sciencedirect.com Current Opinion in Virology 2023, 63:101365



of infection in pets living with COVID-19-affected owners 
than in those in which evidence of contact with an infected 
human was not determined [47–54]. Similarly, de Souza 
Barbosa et al. [55] found a higher probability of dog in
fection when owners exhibited higher viral loads and/or 
related COVID-19 symptoms (e.g. cough, sneezing, 
and diarrhea). As expected, some authors confirmed 

human-to-pet transmission of the dominant SARS-CoV-2 
VOC in human population at each pandemic wave 
[52,54,56,57]. On the other side, pet-to-human transmis
sion has also been demonstrated in hamsters in a pet shop 
in Hong Kong, leading to onward human-to human 
transmission and in cats to veterinarians in Thailand 
[56,58,59].

Figure 2  

Current Opinion in Virology

Natural infection and/or exposure to SARS-CoV-2 in free-range wildlife (purple square), livestock (blue square), companion animals (green square), 
and zoo (orange square) animals, which were associated with SARS-CoV-2-infected humans. Different arrows represent the route of transmission 
between animals and humans: black and red solid arrows indicate human-to-animal and animal-to-human transmission, respectively, evidenced by 
sequencing analysis; black dashed arrows indicate those cases in which human-to animal transmission was not evidenced by sequencing analysis but 
supported by epidemiological data; orange dashed arrows indicate the exposure of animal species probably by contact with infected humans. Figure 
is created with BioRender.com.  
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Although similar infection and antibody prevalence have 
been usually observed when comparing cats and dogs, a 
higher risk of exposure in cats could be expected con
sidering the higher susceptibility and pathology out
comes observed both in silico and experimentally [15,16]. 
Since higher titers of neutralizing antibodies (nAbs) have 
been already correlated with the severity of COVID-19 
in humans [60], such scenario may also be occurring in 
animals. In a large-scale serological study in pets, higher 
titers of nAbs were found in cats than in dogs, even 
against almost all the VOCs [52]. Moreover, a positive 
correlation between the cases of SARS-CoV-2-infected 
humans and the proportion of seropositive pet cats, but 
not dogs, was described in provinces of Korea [61]. On 
the other hand, not only domestic cats but also stray and 
shelter cats have also been exposed to SARS-CoV-2 in 
different countries [46,52,62–64]. The most likely way of 
viral transmission to these cats would be by contact with 
infected humans, but the contact with polluted SARS- 
CoV-2 environments or even with other susceptible 
animal species such as wildlife cannot be ruled out 
[64,65]. Since cat-to-cat transmission is possible, and 
stray and shelter cats live in colonies and/or frequently in 
contact with other individuals, the probability of in
traspecies transmission increases considerably, raising 
significant concerns about their potential role in the 
epidemiology of the COVID-19 as novel animal re
servoirs [15,16,64]. However, a limited sustained cat-to- 
cat transmission has been suggested owing to a reduced 
SARS-CoV-2 transmissibility and pathogenic ability 
after serial passaging of the virus between cats [66].

Livestock
Farm animals may also be exposed to SARS-CoV-2, 
mainly by contact with potential infected farmers and 
animal caretakers (Figure 2). Although natural acute 
infection in common livestock species (e.g. cattle, goat, 
sheep, and horses) has not been evidenced, even after 
contact with COVID-19-positive humans [67], ser
ological analyses confirmed SARS-CoV-2 past exposure 
in cattle [68], cows [69], equines [70], and sheep and 
goats [71]. Regarding equines, Pusterla et al. 
[72] suggested a potential transmission from a COVID- 
19- affected human to an adult horse. However, the most 
relevant SARS-CoV-2 event in farm animals has been 
related to the SARS-CoV-2 outbreaks in farm minks 
(Neovison vison). On April 2020, The Netherlands re
ported increased mortality in two mink farms, which was 
subsequently associated with severe interstitial pneu
monia caused by the SARS-CoV-2 [73]. Until November 
2020, SARS-CoV-2 was spread and detected in 68 out of 
126 mink farms from the whole country [74]. On June 
2020, SARS-CoV-2 infections in hundreds of Danish 
mink farms were also documented [75,76]. In both 
countries, genetic analysis of viral sequences from the 
animals and from associated SARS-CoV-2 human cases 
together with epidemiological data, confirmed the 

introduction of different viral strains in minks, being 
humans the primary source [76,77]. Animal-to-animal 
contact was confirmed within farm, facilitating viral host 
adaptation and the appearance of new SARS-CoV-2 
strains that were subsequently detected in humans in 
the Netherlands and Denmark, respectively [76,77]. 
Zoonotic mink-to-human transmission and evidence of 
human-to-human transmission of viral strains acquired 
from animals led the governments from Netherlands and 
Denmark to order the culling of millions of minks by 
mid-June 2020 [75,77]. Worriedly, the Y453F mutation 
located in the RBD of SARS-CoV-2 in minks has shown 
a higher ability of viral immune escape in humans, 
raising concern about the efficacy of both current vac
cines and acquired humoral response from previous in
fections [78]. In addition, many other countries, 
including the United States (US), Canada, France, 
Greece, Italy, Spain, Sweden, Poland, and Lithuania also 
reported SARS-CoV-2 outbreaks in mink farms [79–82]. 
Whereas the Y453F mutation was typically and ex
clusively found in European mink farms, N501T, 
F486L, and G142D mutations were also found in mink- 
derived sequences from the US [73,83]. Importantly, all 
these mutations support the adaptation of SARS-CoV-2 
to minks and cross-transmission between minks and 
humans [83,84]. Accordingly, a recent experimental in
fection in these animals confirmed a rapid within-host 
evolution of SARS-CoV-2 since an enrichment of the 
L260F mutation appeared in lung tissue and oral swabs 
after challenge [20]. The same mutation was also re
peatedly identified in mink outbreaks from the Neth
erlands, Latvia, and US [20]. This supports that L260F 
mutation also confers a positive selection in mink and 
confirms viral adaptation in this host [20].

Wildlife animals

Wild captive animals
Natural SARS-CoV-2 infections have also been reported 
in large felid species (e.g. lions, tigers, pumas, snow 
leopards, and lynxes) living in captivity in zoological 
parks worldwide [85–94]. Most infections caused by both 
classical and VOCs (e.g. Delta) induced mild-to-mod
erate upper respiratory clinical signs, loss of appetite, 
and anorexia, in contrast to the subclinical infections 
mostly frequently reported in domestic cats [64]. In this 
context, RZ has also played a key role, which is entirely 
reasonable since zoo animals are in frequent contact with 
humans, especially with their keepers [86–89,92]. Also, 
considering that large felids developed prolonged fecal 
shedding and that infectious virus has been found re
peatedly in their feces, the risk of transmission between 
animals and from animals to keepers cannot be dis
missed [85,90,93]. Other reported infections in zoos in
clude nonhuman primates, otters, binturong, 
coatimundi, fishing cat, hyenas, red fox, hippopota
muses, and manatees (Figure 2), which have also been 
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linked to animal contact with COVID-19-affected hu
mans [34,93,95,96]. Recently, the presence of SARS- 
CoV-2 in a fecal sample of a white rhinoceros from the 
Bandia reserve in Senegal was also confirmed, although 
direct contact with an infected human was not 
proven [97].

Free-range wildlife animals
Taking into account that direct contact between human 
and free wild animals seems to be infrequent, the risk of 
SARS-CoV-2 infection could easily be considered lower 
than in domestic animals. However, some authors de
monstrated that wild species have already been infected 
and/or exposed to SARS-CoV-2, despite the major 
challenge of monitoring SARS-CoV-2 infection and to 
detect acute infection in this group of animals.

White-tailed deer 
The most concerning SARS-CoV-2 spillover event from 
humans to wildlife is related to the free-ranging WTD 
(Odocoileus virginianus) [98]. SARS-CoV-2 exposure and/ 
or acute infection in WTD have been described in 
multiple US (e.g. Illinois, Michigan, New York, Penn
sylvania, Texas, Ohio, and Iowa) [99–103]. In agreement 
with experimental and predictive in silico studies, Hale 
et al. [101] found high viral load and infectious virus in 
nasal swabs in WTD from Ohio (USA), providing evi
dence of viral shedding and high susceptibility of WTD 
naturally. Moreover, the authors confirmed up to six 
separate events of human-to-deer transmission, since 
WTD samples collected six weeks after the peak of 
Ohio’s epidemic of COVID-19 in humans contained 
highly similar viral genetic sequences (lineage B.1) to 
human samples [101]. Additionally, RZ transmission in 
WTD was also confirmed in Iowa [102]. In cases of 
WTD infection in both Ohio and Iowa, several muta
tions were repeatedly found in viral sequences from deer 
but not in human-derived sequences, supporting deer- 
to-deer transmission, as already demonstrated experi
mentally [101,104]. Subsequently, multiple spillover 
events of the Alpha and Delta SARS-CoV-2 VOCs from 
humans to WTD in Pennsylvania were evidenced, as 
well as persistence and spread of the Alpha variant in 
deer [103]. Rarely, SARS-CoV-2 Delta variant was de
tected in mule deer (Odocoileus hemionus) in Utah (USA) 
[34]. In addition, a divergent lineage of SARS-CoV-2, 
designated as lineage B.1.641, was identified in WTD in 
Ontario (Canada) and considered as a result of viral host 
evolution and adaptation [105]. A recent common an
cestor of lineage B.1.641 was found in mink- and human- 
derived sequences from Michigan, which suggested a 
potential spillover from humans to deer, or even with 
minks as intermediate host [105]. In this study, the au
thors also suspected of a human spillback of the B.1.641, 
although recurrent deer-to-human transmission or 
human-to-human transmission of B.1.641 was not evi
denced [105]. As a matter of fact, the B.1.641 variant was 

efficiently neutralized by sera from vaccinated or con
valescent human individuals, suggesting a nonsignificant 
impact on immune evasion capacity of SARS-CoV-2 in 
humans [105]. The RZ in WTD is not a very surprising 
event since it is one of the most abundant wild rumi
nants in the USA that live near urban population centers. 
The precise route of transmission from human to deer is 
unknown, but several potential ways are considered, 
including deer hunting or captive operations, conserva
tion work, wildlife tourism, wildlife rehabilitation, or 
public feeding [99,101]. Additionally, indirect contact 
between humans and WTD, as, for example, through 
wastewater or other contaminated sources, may be also 
considered as another opportunity for deer to be in
fected. Besides, SARS-CoV-2 exposure has been de
scribed recently in free-ranging fallow deer (Dama dama) 
and red deer (Cervus elaphus) in suburban and urban 
areas from Spain [106]. This is the first serological in
vestigation finding seropositivity in European deer, as 
other survey studies conducted in Germany, Austria, 
UK, and Belgium yielded negative results [106].

Other free-range wildlife 
Other wildlife animals, included mainly within the fa
mily Mustelidae, have also been infected and/or exposed 
to SARS-CoV-2. Aguiló-Gisbert et al. [107] detected two 
positive free-ranging minks caught in the wild in the 
Valencian Community (Eastern Spain): those animals 
did not appear to have escaped from any nearby mink 
farm. A generalized outbreak of a COVID-19-like con
dition among mink populations in that geographic area 
was highly unlikely since the remaining 11 out of 13 
trapped minks of the study tested negative [107]. Also, 
in the Valencian Community, SARS-CoV-2 was found in 
a wild Eurasian otter (Lutra lutra) living far away from 
the locations where infected minks were found [108]. 
Other species within the family Mustelidae have also 
been exposed to SARS-CoV-2, including pine martens 
(Martes martes) and European badgers (Meles meles) from 
Brittany (France) (Figure 2) [109]. A suggested route of 
viral exposure to wildlife species is through contact with 
SARS-CoV-2- contaminated environment, including 
household wastes, wastewaters, or rivers with feces and 
other excreta from SARS-CoV-2-infected humans 
[108,109]. The presence of SARS-CoV-2 RNA in was
tewaters and sewage has been demonstrated con
tinuously worldwide; however, it has not been found 
an infectious virus in these residual waters, which re
duces the probability as a route of transmission [110]. 
The absence of infectious virus could be given by the 
environmental conditions of wastewater, such as the 
temperature, pH, and presence of antagonistic bacteria 
or chemicals, that could interfere with the viability of 
CoVs and inactivate them [110]. However, it is very 
likely that the amount of virus is low enough in these 
residual products to prevent effective infection of any 
species in contact with them [110].
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Additionally, mink farms are also a potential source of 
infection of other susceptible animal species, such as 
free-ranging animals that could have access to the farms 
and have direct contact with infected minks or their 
feces, feed, or bedding. This is why Sikkema et al. [111]
assessed SARS-CoV-2 infection in wild carnivores near 
mink farms in The Netherlands, although reverse tran
scription quantitative real-time polymerase chain reac
tion (RT-qPCR)-positive animals were not detected 
[111]. However, Van Aart et al. [65] found positive feral 
cats in infected mink farms in the same country and 
strongly suspected mink-to-cat transmission by genome 
sequencing analyses [65]. They also found infected stray 
dogs, although whether mink or humans that infected 
them remained inconclusive [65]. Also, escapees of do
mestic minks to the wild could lead to cross-species 
transmission. Shriner et al. [112] already described 
SARS-CoV-2 exposure in 11 free wild American minks 
in Utah (US), that presumed to be domestic escapees 
from a fur farm where outbreaks of SARS-CoV-2 oc
curred previously. Also, 3 out of the 11 antibody-positive 
minks tested positive by RT-qPCR [112].

Last, SARS-CoV-2 infection was described in a free- 
ranging feline species (Panthera pardus fusca) in India 
[113] and in a free-ranging nonhuman primate in a black- 
tailed marmoset (Mico melanurus) from an urban area in 
Mid-West Brazil on March 2022 [114].

Conclusions and future perspectives
From the beginning of the COVID-19 pandemic, the 
promiscuity of SARS-CoV-2 for dozens of mammalian 
species has been translated into different natural sce
narios, including domestic and wildlife (Figure 2). Nat
ural SARS-CoV-2 infections reported worldwide in 
animals have been mainly related to a direct or indirect 
RZ transmission, raising concern about the frequent 
human and animal interaction. The regular acquisition of 
companion animals, the livestock industry, the existence 
of zoos and conservation centers, tourism, and hunting or 
deforestation, are everyday situations that highly in
crease the chances of cross-species transmission of 
SARS-CoV-2 (as well as other pathogens).

To date, American mink and the WTD are the only 
species that led an extensive intraspecies transmission of 
SARS-CoV-2 after a RZ [6], leading to an efficient 
spread of the virus and subsequent animal-to-human 
transmission. Viral host adaptation events subsequently 
increase the possibility of the establishment of animal 
reservoirs that, in the worst case, could give rise to the 
emergence of new variants with a huge global health 
impact. In this regard, the WTD could already be con
sidered as a host reservoir since it is permissive to SARS- 
CoV-2 infection without suffering from a severe disease 
and with a vast immune tolerance. In contrast, a 

proportion of infected minks show certain degree of re
spiratory disease, including mortality in some cases [73], 
which may prevent the sustaining of the virus for a long 
time; anyway, an important role as intermediate host 
may be considered.

Interactions between human and free-ranging wild ani
mals are more limited than in the case of domestic ani
mals. However, many human activities with direct or 
indirect contact may pose a significant risk of animal 
exposure. Since monitoring wildlife animals is extremely 
challenging, it is advisable to use the current available 
information to prioritize the surveillance of some species 
groups with potential susceptibility such as mustelids or 
felids. Additionally, to promote monitoring of other 
species such as the racoon dog or palm civets may not be 
dismissed, considering their role in the previous SARS- 
CoV epidemic [115]. Bats may also be considered since a 
wide variety of CoVs have been found in these species 
over time, which may facilitate the recombination of 
SARS-CoV-2 with other CoVs [116]. However, to date, 
SARS-CoV-2 has not been found yet in bat species.

In light of the notable exposure to SARS-CoV-2 mainly 
to companion animals, it is appropriate to prevent close 
contact with them, at least by infected patients. 
Although the effectiveness of COVID-19 vaccines for 
preventing viral transmission is still debatable, con
sidering that current vaccines are able to reduce viral 
replication, infectivity, and symptomatology, the capa
city of the virus for host-to-host transmission might be 
also reduced in vaccinated humans [117]. Relevantly, 
dogs that usually are the closest pet to humans, do not 
efficiently transmit the virus as cats, ferrets, or hamsters, 
suggesting a lowest risk of spillback events and being far 
to be considered a potential animal reservoir. However, 
since pet-to-human transmission has already occurred in 
case of cats and hamsters (Figure 2), promoting addi
tional measures such as vaccination of companion ani
mals is currently being further considered and in 
development [118]. Other populations such as stray cats 
or shelter cats, which live in groups, need also to be 
controlled to prevent intraspecies transmission and the 
sustainment of SARS-CoV-2 and new emerging variants, 
or even to avoid the risk of transmission to other free- 
ranging animals as well as humans.

The current COVID-19 pandemic situation truly re
quires the One Health perspective, in which experts in 
human, animal, and environmental health coordinate 
together to design useful strategies to prevent and 
overcome potential new threats into global health. The 
One Health approach may include monitoring the 
emergence of new potential variants of SARS-CoV-2 
since the range of animal susceptibility may increase and 
it would be paramount to avoid the risk of establishment 
of new animal reservoirs.
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