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Abstract: Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that
have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the
effects of gestational caloric restriction and early postnatal metformin administration on offspring’s
adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows
were either underfed (30% restriction of total food) or kept under standard diet during gestation, and
piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment
(n = 16 per group) throughout lactation. DNA methylation and gene expression were assessed in
the retroperitoneal adipose tissue of piglets at weaning. Results showed that gestational caloric
restriction had a negative effect on the metabolic profile of the piglets, increased the expression of
inflammatory markers in the adipose tissue, and changed the methylation of several genes related
to metabolism. Metformin treatment resulted in positive changes in the adipocyte morphology
and regulated the methylation of several genes related to atherosclerosis, insulin, and fatty acids
signaling pathways. The methylation and gene expression of the differentially methylated FASN,
SLC5A10, COL5A1, and PRKCZ genes in adipose tissue associated with the metabolic profile in
the piglets born to underfed sows. In conclusion, our swine model showed that caloric restriction
during pregnancy was associated with impaired inflammatory and DNA methylation markers in the
offspring’s adipose tissue that could predispose the offspring to later metabolic abnormalities. Early
metformin administration could modulate the size of adipocytes and the DNA methylation changes.

Keywords: caloric restriction; metabolic programing; DNA methylation; adipose tissue

1. Introduction

Over the past decades, growing evidence has emerged on the relationship between
intrauterine environment and later-life health. Back in the early 90s, Barker et al. showed a
relationship between low birth weight and increased susceptibility to metabolic diseases
later in life for the first time [1,2]. In 2005, the “Developmental Origins of Health and
Disease (DOHaD)” hypothesis, postulated by Gillman et al., stated that limited nutrient
supply to the fetus results in physiologic and metabolic adaptations that had unfavorable
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consequences in the offspring [3,4]. In this sense, several epidemiological studies showed
that low calorie intake or malnutrition during pregnancy is associated with increased
risk of metabolic and cardiovascular diseases, such as hypertension, insulin resistance,
type 2 diabetes, and obesity [1,4–8].

Epigenetics have emerged as one of the mechanisms that could explain the link between
the intrauterine environment and later-life consequences [5]. Epigenetic marks are established
during development, especially at the embryonic stage, when the entire epigenome is deleted
and re-established [7,9]. The influence of environment on the epigenetic marks can have
an effect on metabolic tissues (i.e., adipose tissue), altering their lifetime functionality [1,10].
According to the thrifty epigenotype theory, epigenetics play a much more important role in
the etiology of such diseases than DNA sequence polymorphisms [11].

Adipose tissue provides thermal protection and somatic support and acts as an en-
docrine tissue. Its formation starts during the intrauterine period and continues throughout
life [12]. Adipose tissue is extremely influenced by environment and fetal nutrition has
a critical role in its development [13,14]. Adipose tissue has been recognized as one of
the major targets of the fetal programming linking prenatal undernutrition to increased
adiposity later in life [15], especially the visceral adipose tissue component [16]. McMillen
et al. postulated that scarcity of nutrients during critical periods of development ends in
alterations in the structural and functional characteristics of adipose tissue, consequently
affecting the endocrine feedback loop between adipose tissue and the system regulating
energy balance and body fat mass [15,16].

Metformin is the antidiabetic drug most used worldwide. It works by inhibiting hepatic
glucose production and its absorption in the small intestine and increasing glucose periph-
eral uptake and utilization [17–19]. Metformin has multiple sites of action and molecular
mechanisms; in this way, it has also been demonstrated its beneficial effects on adolescents
with polycystic ovarian syndrome, obesity, and prenatal growth restriction [20–22]. Pre-
vious data from our group showed that, in a swine animal model, maternal overfeeding
during gestation leads to metabolic abnormalities in the offspring, including adipose tissue
alterations and that early metformin administration to the offspring, can mitigate these
effects [23].

Here, we have used a similar swine animal model to study the effects of gestational
caloric restriction and early metformin administration on offspring’s adipose tissue epige-
netics and their association with morphometric and metabolic variables.

2. Results
2.1. Effect of Gestational Caloric Restriction and Metformin Treatment on Offspring Characteristics

The schematic view of the swine animal model designed for this study is shown
in Figure 1.

Underfed piglets showed no differences compared to control piglets regarding mor-
phometric parameters neither at birth nor at weaning (Table 1). However, when analyzing
serum metabolic variables at weaning, underfed piglets showed a partly altered metabolic
profile, with higher fructosamine (p < 0.001), total cholesterol (p = 0.030), CRP (p < 0.001),
and lower circulating HMW-adiponectin (p < 0.001) (Table 1). Moreover, gestational caloric
restriction had a slight effect on adipose tissue inflammatory markers as piglets born to un-
derfed sows presented higher expression levels of TNF-α and CCL2 (p = 0.017 and p = 0.002,
respectively) (Table 1).

Metformin treatment did not trigger statistically significant changes in morphomet-
ric parameters of the piglets. However, metformin treatment associated with changes in
adipocyte morphology at weaning (Table 1, Figure 2), as adipocytes from piglets treated with
metformin showed lower area, perimeter, and diameter compared to placebo (all p < 0.01).
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HMW adiponectin (mg/L) 1.07 ± 0.2 1.06 ± 0.2 0.88 ± 0.3 0.85 ± 0.1 0.921 <0.001 0.691 
Adipose Tissue        
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Figure 1. Schematic view of the swine animal model designed for this study.

Table 1. Morphometric, metabolic variables, and adipose tissue characteristics of the studied piglets
at weaning.

Control Underfed Two-Way
ANOVA for
Interaction

Gestational
Caloric

Restriction

Metformin
TreatmentVehicle

N = 16
Metformin

N = 16
Vehicle
N = 16

Metformin
N = 16

Morphometry p-value p-value p-value

Birth weight (Kg) 1.67 ± 0.3 1.68 ± 0.2 - 0.890 -
Weight (kg) 7.91 ± 1.3 7.06± 1.3 7.12± 1.4 7.46 ± 1.6 0.093 0.572 0.477
Weight gain since birth (kg) 6.24 ± 1.3 5.39± 1.3 5.49± 1.3 5.81 ± 1.4 0.082 0.636 0.440
Abdominal circumference (cm) 34.59 ± 2.7 32.93 ± 3.2 33.06± 2.3 33.94 ± 2.6 0.064 0.610 0.636
Dorsal fat thickness (cm) 0.38 ± 0.12 0.37 ± 0.10 0.36± 0.07 0.37 ± 0.12 0.781 0.887 0.732

Metabolic

Glucose (mg/dL) 301.06 ± 123.1 332.56± 147.8 314.19± 86.3 282.13 ± 88.9 0.271 0.518 0.992
Insulin (mU/L) 0.87 ± 0.1 0.85 ± 0.1 0.89 ± 0.1 0.84 ± 0.1 0.550 0.904 0.195
HOMA-IR 0.64 ± 0.3 0.70 ± 0.3 0.70 ± 0.3 0.59 ± 0.2 0.266 0.994 0.562
Fructosamine (µM) 296.81 ± 25.0 271.50 ± 19.9 329.47 ± 60.0 324.14 ± 34.8 0.163 <0.001 0.094
Total cholesterol (mg/dL) 189.00 ± 44.8 167.75 ± 46.6 211.31 ± 92.5 227.50 ± 70.8 0.152 0.030 0.869
HDL-cholesterol (mg/dL) 63.81 ± 10.8 58.63 ± 7.0 60.00 ± 13.8 64.69 ± 14.3 0.101 0.709 0.934
Triglycerides (mg/dL) 100.63 ± 40.4 116.25 ± 35.7 97.81 ± 31.4 108.69 ± 49.8 0.561 0.670 0.169
C-reactive protein (mg/L) 0.007 ± 0.002 0.007 ± 0.002 0.011 ± 0.003 0.012 ± 0.004 0.753 <0.001 0.731
HMW adiponectin (mg/L) 1.07 ± 0.2 1.06 ± 0.2 0.88 ± 0.3 0.85 ± 0.1 0.921 <0.001 0.691

Adipose Tissue

Adipocyte area (µm) 1316.56 ± 267.1 1109.00 ± 365.1 1273.63 ± 258.8 1074.94 ± 282.4 0.952 0.602 0.008
Adipocyte perimeter (µm) 135.88 ± 14.9 123.81 ± 22.3 134.69 ± 13.2 123.69 ± 17.3 0.903 0.870 0.009
Adipocyte diameter (µm) 37.69 ± 5.1 33.69 ± 5.3 37.50 ± 4.1 34.44 ± 5.3 0.707 0.820 0.006
TNF-α expression 0.006 ± 0.004 0.005 ± 0.003 0.007 ± 0.005 0.016 ± 0.024 0.132 0.017 0.277
IL6 expression 0.010 ± 0.010 0.009 ± 0.007 0.011 ± 0.009 0.010 ± 0.006 0.523 0.434 0.777
CCL2 expression 0.23 ± 0.1 0.29 ± 0.2 0.42 ± 0.3 0.45 ± 0.3 0.792 0.002 0.424
INSR expression 0.62 ± 0.3 0.66 ± 0.3 0.71 ± 0.4 0.87 ± 0.4 0.503 0.198 0.259
IRS1 expression 0.37 ± 0.2 0.34 ± 0.2 0.41 ± 0.2 0.44 ± 0.2 0.573 0.108 0.947

Data are shown as mean ± SD. In bold statistical significant p-values.

2.2. Effect of Gestational Caloric Restriction and Metformin Treatment on Adipose Tissue
DNA Methylation

Comparisons between control and underfed offspring at the individual CpGs level
revealed 272 CpGs to be differentially methylated. Gestational restriction triggered hyperme-
thylation of 163 CpG and hypomethylation of 109 CpG (Figure 3, Supplemental Table S1).
The top five most significant hypermethylated CpGs annotated for the gens PIWIL1, FASN,
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SLC5A10, ADAP1, and COL5A1, and the hypomethylated for NELFB, ssc-mir-744, ssc-mir-9816,
CABYR, and DKK3. At the functional level, the list of differentially methylated CpGs was used
to identify the most affected signaling pathways. After pathway analysis with DAVID, we
found that the enriched signaling pathways of the corresponding genes were mostly involved
in pathways related to metabolism (Figure 4A).
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Figure 4. Gene ontology analysis. (A) KEGG database pathways of the differentially methylated
CPGs with caloric restriction. (B) KEGG database pathways of the differentially methylated CpGs
with caloric restriction and metformin treatment.

Piglets receiving metformin showed methylation differences compared to those receiv-
ing placebo in 221 CpGs. The drug hypermethylated 88 CpG sites and hypomethylated
133 CpG sites (Figure 3, Supplemental Table S2). The most significant CpGs hypermethylated
annotated for HTT, NELFB, ALOX5AP, TSPO, and ssc-mir-9814, and the hypomethylated for
PIWIL1, INPPL1, ALG10, PRLHR, and IL10. The corresponding significant enriched signaling
pathways were atherosclerosis, insulin signaling, and fatty acids metabolism (Figure 4B).

2.3. Gestational Caloric Restriction Regulates DNA Methylation and Gene Expression in
Adipose Tissue

Pyrosequencing analysis in all adipose tissue samples showed that FASN was affected
by gestational caloric restriction at both methylation and gene expression levels in opposite
directions, as underfed piglets showed higher FASN methylation levels (p = 0.043) and
lower FASN gene expression levels (p = 0.018) compared to control. SLC5A10 methylation
levels were higher in the underfed group (p = 0.032) compared to control but no differ-
ences were observed in SLC5A10 gene expression. Gestational caloric restriction had no
effect on COL5A1 methylation and gene expression. Gestational caloric restriction did
not affect PRKCZ methylation, but PRKCZ gene expression levels were lower in underfed
(p = 0.003) compared to controls piglets (Table 2 and Figure 5). No significant differences
were observed with metformin treatment in any of the studied genes.



Int. J. Mol. Sci. 2024, 25, 1128 6 of 15

Table 2. DNA methylation and gene expression in adipose tissue from the piglets at weaning.

Control Underfed Two-Way
ANOVA for
Interaction

Gestational Caloric
Restriction Metformin

Vehicle
N = 16

Metformin
N = 16

Vehicle
N = 16

Metformin
N = 16 p-Value p-Value

Methylation

FASN 11.95± 10.9 11.50 ± 11.5 20.57 ± 13.8 15.43 ± 10.8 0.712 0.043 0.586
SLC5A10 37.51 ± 17.8 38.67 ± 29.9 55.73 ± 27.9 56.35 ± 29.1 0.652 0.032 0.575
COL5A1 61.16 ± 4.2 60.44 ± 3.4 60.97 ± 2.8 61.41 ± 3.9 0.536 0.685 0.892
PRKCZ 28.02 ± 5.9 30.04 ± 2.9 29.07 ± 3.2 29.87 ± 4.9 0.795 0.727 0.209

Gene Expression

FASN 0.69 ± 0.7 0.87 ± 0.6 0.47 ± 0.3 0.45 ± 0.3 0.319 0.018 0.396
SLC5A10 0.012 ± 0.007 0.013 ± 0.007 0.013 ± 0.007 0.013 ± 0.007 0.663 0.861 0.821
COL5A1 2.46 ± 1.1 2.57 ± 0.9 2.90 ± 1.2 2.53 ± 0.8 0.323 0.401 0.861
PRKCZ 0.010 ± 0.009 0.011 ± 0.009 0.005 ± 0.003 0.006 ± 0.006 0.864 0.003 0.439

Data are shown as mean ± SD. In bold statistical significant p-values.
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Figure 5. Graphs comparing the DNA methylation and gene expression levels of FASN, SLC5A10,
COL5A1, and PRKCZ in adipose tissue of underfed and control piglets (* p < 0.05, ** p < 0.01 and
*** p < 0.001).

2.4. DNA Methylation and Gene Expression in Adipose Tissue Associated with the Metabolic
Profile of the Piglets Born to Underfed Sows

In piglets born to underfed, but not control, sows, FASN methylation associated with
an unfavorable metabolic profile with higher weight, weight gain since birth, abdominal
circumference, and dorsal fat thickness and FASN expression showed opposite associations
(lower dorsal fat thickness) (all p < 0.05). Both SLC5A10 methylation and expression associ-
ated with a favorable metabolic profile. SLC5A10 methylation associated with lower birth
weight (p < 0.01) and higher HDL-cholesterol and INSR expression (both p < 0.05), while
SLC5A10 gene expression associated with lower weight (p < 0.05), weight gain since birth
(p < 0.02), dorsal fat thickness (p < 0.001), and fructosamine (p < 0.001), and higher HMW
adiponectin (p < 0.02). COL5A1 also associated with a favorable metabolic profile. COL5A1
methylation associated with lower birth weight (p < 0.05) and higher HDL-cholesterol and
INSR expression (all p < 0.05), while COL5A1 gene expression associated with lower birth
weight (p < 0.02), weight (p < 0.05), weight gain since birth (p < 0.05), and fructosamine
(p < 0.05) and higher HDL-cholesterol (p < 0.001). PRKCZ methylation associated with an
unfavorable metabolic profile with lower HDL, INSR, and IRS1 expression (all p < 0.05),
while PRKCZ gene showed opposite associations with higher HDL-cholesterol (p < 0.05)
and INSR expression (p < 0.02) (Table 3 and Figure 6).



Int. J. Mol. Sci. 2024, 25, 1128 7 of 15

Table 3. Pearson correlation coefficients between DNA methylation and gene expression in adipose
tissue and morphometric and metabolic variables in underfed piglets at weaning.

Underfed

FASN
Methylation

FASN Gene
Expression

SLC5A10
Methylation

SLC5A10
Gene

Expression

COL5A1
Methylation

COL5A1
Gene

Expression

PRKCZ
Methylation

PRKCZ Gene
Expression

Morphometry

Birth weight −0.034 −0.150 −0.563 ** −0.153 −0.395 * −0.455 ** 0.266 −0.029
Weight 0.528 * −0.260 −0.320 −0.423 * −0.203 −0.435 * 0.036 0.005
Weight gain since birth 0.588 ** −0.267 −0.217 −0.459 ** −0.147 −0.388 * 0.001 0.012
Abdominal circumference 0.447 * −0.254 −0.026 −0.257 −0.192 −0.167 −0.075 0.055
Dorsal fat thickness 0.542 ** −0.367 * −0.001 −0.558 *** −0.208 −0.337 −0.090 −0.201

Metabolic Markers

Glucose 0.250 −0.220 0.052 −0.309 −0.002 0.104 0.024 0.016
Insulin −0.227 0.006 −0.213 −0.115 −0.135 −0.026 −0.055 −0.012
HOMA-IR 0.124 −0.201 −0.052 −0.304 −0.067 0.036 0.043 −0.036
Fructosamine 0.215 −0.218 −0.037 −0.595 *** −0.274 −0.374 * −0.007 −0.315
Total cholesterol 0.199 0.154 0.289 −0.192 0.414* 0.103 −0.223 0.337
HDL-cholesterol 0.141 0.242 0.384 * 0.222 0.388* 0.634 *** −0.432 * 0.420 *
Triglycerides −0.208 −0.149 0.204 0.184 −0.173 −0.347 −0.134 0.065
C-reactive protein 0.017 0.055 −0.270 −0.276 −0.341 −0.337 0.424 * −0.335
HMW adiponectin −0.123 0.267 −0.149 0.463 ** 0.080 0.170 −0.147 0.264

Gene Expression in the Adipose Tissue

TNFA expression −0.028 −0.014 0.061 −0.088 0.329 0.122 −0.063 0.288
IL6 expression −0.147 −0.015 0.073 −0.209 0.102 0.075 −0.201 0.052
CCL2 expression −0.149 0.177 −0.028 0.109 0.036 0.240 −0.335 0.267
INSR expression −0.261 0.043 0.390 * 0.077 0.454 * 0.291 −0.356 * 0.456 **
IRS1 expression −0.249 0.002 0.213 0.097 0.333 0.355 * −0.378 * 0.264

* p < 0.05, ** p < 0.01, *** p < 0.001.
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3. Discussion

Our work studied the effect of gestational caloric restriction and early metformin
administration on the offspring’s adipose tissue DNA methylome in a pig model for the
first time, and showed that caloric restriction during pregnancy regulates DNA methylation
and gene expression in the offspring’s adipose tissue that, in turn, associated with the
metabolic profile of the offspring.

Our model of fetal undernutrition shows differences in the metabolic and inflam-
matory status of the piglets. Piglets born to underfed sows showed a worse metabolic
profile, with higher fructosamine, total cholesterol, C-reactive protein, and lower HMW-
adiponectin. These results show alterations in glucose, lipid, and inflammation levels, all
of them markers of metabolic syndrome. Adipose tissue inflammatory markers were also
altered by undernutrition, which led to higher expression levels of the pro-inflammatory
genes TNF-α and CCL2. In this sense, previous findings in the literature stated that adipose
tissue adjusts its function and metabolism in response to the nutritional status [24]. All
these results are in line with previous studies highlighting the link between gestational
undernutrition and the likelihood of developing cardiometabolic abnormalities later in
life [25,26] and post-natal inflammation [5,27–30].

On the other hand, metformin treatment had an impact on visceral adipose tissue,
reducing the adipocyte area, perimeter, and diameter, as we previously described in a similar
swine animal model of gestational overfeeding [23]. Metformin regulates adipogenesis [31],
fibrosis [32,33], and fatty acids metabolism [34] of the adipose tissue. The beneficial effects of
lactation metformin treatment on offspring adipose tissue had also been described in mice [35].

The methylation array showed hypermethylation of 163 CpGs and hypomethylation
of 109 CpGs associated with gestational caloric restriction. Most of the CpGs annotated
for genes related to metabolism, showing the adaptation of the piglet’s metabolism in
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response to the caloric-restricted environment during pregnancy. It is known that caloric
restriction at any life period will have metabolic effects on the body [36–38]. Metformin, in
turn, hypermethylated 88 CpGs and hypomethylated 133 CpGs, a great deal of them being
related to insulin signaling and fatty acid metabolism. These results are plausably related
to the metformin mechanism of action since both pathways are affected by this drug [39].

FASN was hypermethylated by gestational caloric restriction (higher FASN methyla-
tion in the underfed group) and triggered opposite effects on gene expression, showing
lower FASN expression in the underfed group. Moreover, in underfed piglets, FASN methy-
lation associated with higher weight and dorsal fat. FASN is known to play a central role
in de novo lipogenesis in mammals, catalyzing the reaction in the synthesis of palmitate
from acetyl-CoA and malonyl-CoA [40]. To our knowledge, there are no previous studies
investigating the effect of gestational caloric restriction on FASN methylation in the adipose
tissue. Nevertheless, FASN gene expression has been broadly related to the regulation of
body weight and the development of obesity [41].

Diet-induced hypermethylation of SLC5A10 in the underfed group, whereas no ef-
fect on gene expression was observed. SLC5A10 encodes for a sodium-dependent sugar
transporter; in particular, SLC5A10 is known to transport mannose, fructose [42,43], and a
monosaccharide similar to glucose, the 1.5-anhudroglucitol [44]. In humans, it is thought to
be exclusively expressed in the kidney [42]. In the underfed group, negative associations of
gene expression with weight, fat, and fructosamine parameters were observed. This could
be explained by its role in fructose absorption, considering that fructose levels have been
associated with insulin-resistance and liver lipogenesis [43].

COL5A1 encodes for the alpha 1 chain of the collagen V protein, and positively correlates
with adipose tissue expansion [45]. Contrary to previous bibliography, we acknowledge a neg-
ative correlation between morphometric parameters and COL5A1 gene expression. However,
Dankel et al. found an upregulation of COL5A1 after major weight loss following bariatric
surgery, proposing a switch to metabolically favorable remodeling of adipose tissue after
profound fat loss [46]. In our experimental model, this inverse correlation could compensate
for the adverse environment of nutrition during pregnancy.

Undernutrition diminished PRKCZ gene expression in adipose tissue. Interesting
associations were observed in the underfed piglets in both methylation and gene expression.
Methylation of PRKCZ in the underfed group negatively correlated with INSR and IRS1
expression, and positively with CRP, showing a relationship between methylation and
inflammatory and insulin resistance markers. This relationship was inversely observed
in part with gene expression since it positively correlated with INSR expression. PRKCZ
transmits insulin signaling downstream, through its interaction with IRS1 [47]. Due to its
function, PRKCZ is an important factor in the pathogenesis of type 2 diabetes (T2D) [48].
Our results reinforce previous literature on the relationship between PRKCZ methylation
and the initiation and progression of T2D [48].

We acknowledge that our swine model may have some limitations as we did not
observe differences in the offspring morphometric variables nor alterations in the adipose
tissue histology, as has been previously described in different animal species. In sheep,
a 50% restriction of their nutritional requirements both during early [49] and late [29]
pregnancy reduced the body weight of the offspring at birth compared to control dams
(which received 100% of requirements) and showed lower subcutaneous fat deposition.
In rats with a 50% maternal food-restriction during pregnancy, the pups showed lower
body weight at birth and at PD22 and PD42 compared to control pups (with ad libitum
maternal diet) and higher retroperitoneal adipose tissue and visceral fat [50,51]. Our model
of gestational caloric restriction was just about 30% during pregnancy, while in resembling
studies caloric intake was reduced up to 50% during the third trimester [52]. However,
the differential impact of fetal malnutrition may be related to the amount and timing of
the malnutrition exposure [53] and to the ability of adipogenic precursors to develop in
response to different nutritional exposures [54]. Moreover, it is known that the pig under
low calorie intake is able to mobilize maternal energy reserves to support placental and
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fetal development. If the sow is healthy, a modest reduction in the dietary intake of energy
is not enough to cause growth defects in the piglets [9]. Another limitation is the limited
genome information in the pig species. Nevertheless, pigs have proven to be a valuable
animal model in nutritional, metabolic, and cardiovascular research and in some other
biomedical research areas (toxicology, neurobiology). The main reasons to select this animal
for research is the large resemblance with human in regard to their (neuro)anatomy, the
gastro-intestinal tract, body size, body composition, and the omnivorous food choice and
appetite. Moreover, both humans and pigs are prone to the development of obesity and
related cardiovascular diseases such as hypertension and atherosclerosis [11,55,56]. Pig
models fill the gap between rodent models and primate species including humans and such
studies are essential to understand the link between prenatal environment and postnatal
development. From this standpoint, our research also reinforces the idea of epigenetics
explaining, at least in part, such links between in utero environment and offspring health
later in life. Further work needs to be completed to elucidate all the components involved
in such links, to be able to early detect and prevent long-term cardiometabolic diseases.
Moreover, it would be interesting to study the effect of other antidiabetic drugs to validate
our results and substantiate the argument presented. Our data fail to show the beneficial
effects of metformin administration on the metabolic profile of the underfed piglets that was
observed in our previous swine model of gestational overfeeding [23]. This may be related
to the lack of morphological alterations observed in the offspring of caloric restricted sows.

In conclusion, our swine model showed that caloric restriction during pregnancy was
associated with impaired inflammatory and DNA methylation markers in the offspring’s
adipose tissue, which could predispose the offspring to later metabolic abnormalities.
Early metformin administration could modulate the size of adipocytes and the DNA
methylation changes.

4. Materials and Methods
4.1. Animal Model and Samples

A model of gestational caloric restriction was developed using sows obtained from the
crossbreed between Landrace x Duroc sows and Pietrain purebred boars. The study was
approved by the Ethical Committee of Institut de Recerca i Tecnologia Agroalimentàries
(IRTA) and animal housing and experimentation was performed following national and in-
stitutional guidelines for Good Experimental Practices. Pregnant sows were separated into
two dietary groups: (1) control (n = 12), which were fed with a standard diet (2050 Kcal/kg
feed; 5% fat, 15% crude protein, 48% carbohydrate plus sugars, 7% crude fiber); and (2) un-
derfed (n = 12), which were fed with 70% of the standard diet. Diet intervention started at
conception and continued during the pregnancy. Diet intervention finished at birth and
during lactation sows from both groups were fed with a standard diet (Figure 7). At birth,
piglets born to control (n = 32, 16 males and 16 females) and underfed (n = 32, 16 males
and 16 females) were randomly divided into two different treatments: (1) metformin
(50 mg/kg/day prepared in water with corn starch 4 g/day; n = 16, 8 males and 8 females)
and (2) vehicle alone (water with corn starch 4 g/day; n = 16, 8 males and 8 females),
which were administered orally. The dose of metformin was constant per kg of the animal
throughout all the experiment and similar to the one used by Gonzalez-Bulnes et al. [57]
(approximately 45 mg/kg/day). Piglets were sacrificed at weaning (28 days old). On the
same day, after a fasting period, blood was drawn, clotted at room temperature for 30 min,
and centrifuged at 2000× g for 15 min to obtain serum. Adipose tissue samples from the
visceral fat layer at retroperitoneal level were collected at sacrifice.

4.2. Morphometry

Piglet’s weight was obtained at birth and sacrifice using a universal scale. Abdominal
circumference was measured at the level of the last rib with a metric tape. Subcutaneous
dorsal fat thickness was assessed using a calibrated caliper [58].
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4.3. Metabolic Markers

Serum determinations of metabolic markers including glucose, insulin, fructosamine,
HDL and total cholesterol, triglycerides, C-reactive protein (CRP), and High Molecular
Weight (HMW) adiponectin were performed using standardized tests as previously de-
scribed [23]. Homeostatic model assessment of insulin resistance (HOMA-IR) and HOMA-β
indexes were calculated as previously described [59].

4.4. Adipose Tissue Histology

Histological sections of retroperitoneal adipose tissue were obtained and the mor-
phometric studies to quantify the area, perimeter, and diameter of the adipocytes were
performed as previously described [23].

4.5. Whole Methylome Analysis

A whole methylome analysis was performed in 32 samples of retroperitoneal adipose
tissue [16 control (8 with metformin treatment and 8 with vehicle) and 16 underfed (8 with
metformin treatment and 8 with vehicle)] using RRBS (Reduced Representation Bisulfite
Sequencing) by Diagenode (Seraing, Belgium) as previously described [23]. Briefly, high-
quality genomic DNA from eight randomly selected samples of adipose tissue per diet and
treatment was isolated and bisulfite converted using GentraPureGene tissue kit (Qiagen,
Hilden, Germany) and EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA, USA),
respectively. Sequencing was conducted on a HiSeq 3000 (Illumina, San Diego, CA, USA).
The swine reference genome susScr3, from the USCS Genome Browser, was used for
alignment and methylation calling. Raw data are available under GEO accession number
GSE169515. Differentially methylated cytosines in CpG cytosine and guanine dinucleotides
sites (CpGs) (at least 15% of methylation difference and adjusted p-value < 0.05) and their
annotated genes were obtained.

Several CpGs and their annotating genes were selected according to their significance
(lower p-value) and their relevance (presence of two or more differentially methylated CpGs
annotating for the same gene within 150 pb of distance) to be studied in all adipose tissue
samples (Supplemental Table S3). FASN had 11 CpGs, with a mean methylation difference
between groups of 24%. SLC5A10 presented 4 CpG differentially methylated and a mean
methylation difference of 22%. COL5A1 had 2 CpGs with a difference of methylation of
20%. PRKCZ was also chosen for validation since metformin had the opposite effect as diet
on CpGs methylation. Restriction hypermethylated 2 CpGs annotating for PRKCZ, with a
mean differential methylation of 19%, and metformin also hypomethylated 2 CpGs with a
differential mean methylation of −17%. FASN methylation was also inversely affected by
metformin, while diet hypermethylated 11 CpGs, metformin hypomethylated 10 CpGs.
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4.6. Pyrosequencing Analysis

DNA methylation of the selected CpGs was analyzed in all adipose tissue samples
(n = 16 samples per diet and treatment intervention) by pyrosequencing as previously
described [23]. Briefly, bisulphite DNA was amplified by PCR and pyrosequenced in a
PyroMark Q96 ID (Qiagen, Germany) using specific primers (Supplementary Table S3).
DNA methylation levels for each gene were calculated as the average of all the differentially
methylated CpGs with the same gene annotation.

4.7. Gene Expression Analysis

The expression of several adipose tissue genes related to inflammation as well as
the genes annotating for the selected CpGs was analyzed in all adipose tissue samples
(n = 16 samples per diet and treatment intervention) by RT-PCR as previously described [23].
Briefly, total RNA was extracted using the RNeasy Mini Kit and retrotranscribed to cDNA
with the High-Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA,
USA). The expression of the genes related to inflammation was tested with the following
TaqMan Gene Expression Assays from Thermo Fisher Scientific: TNFA (Ss03391318_g1), IL6
(Ss03384604_u1), CCL2 (Ss03394377_m1), INSR (Ss03375405_u1), and IRS1 (Ss04327584_m1).
The expression of the genes selected from methylation studies was tested with the following
TaqMan Gene Expression Assays: FASN (Ssc03386194_u1), PRKCZ (Ssc04321729_m1),
SLC5A10 (Ss03379037_u1), and COL5A1 (Ssc03379198_u1). GAPDH (Ss03374854_g1) was
used as a housekeeping control. Relative expression levels were calculated according to the
2−∆Ct method.

4.8. Statistics and Gene Ontology Analyses

Statistical analyses were completed with the program SPSS 22.0 (IBM, Armonk, NY,
USA). To improve symmetry, non-normally distributed variables were log-transformed.
Data are shown as mean ± standard deviation (SD). The comparisons between maternal
diet and treatment interventions were assessed using Two-way ANOVA tests. Pearson
correlation was used to analyze associations between variables. Combined data for males
and females are shown since no sex differences were evident. Significance was set at
p < 0.05. Gene ontology analysis was performed on the website DAVID bioinformatics [60],
pathways come from the KEGG database, with a FDR cut-off of 10.

Supplementary Materials: The following supporting information can be downloaded at: https://
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