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Summary 19 

Porcine circovirus 3 (PCV3) is a new species of the Circovirus genus, which has recently been 20 

associated with different clinical syndromes. Its presence has been reported in different countries of 21 

North and South America, Asia and recently also Europe (Poland). However, differently from the 22 

other continents, no European PCV3 sequence is currently available in public databases. There is a 23 

strong need of epidemiological data and full genome sequences from Europe because of its 24 

relevance in the understanding of PCV3 molecular epidemiology and control. To fill this lack of 25 

information, samples collected in Denmark, Italy and Spain in 2016 and 2017 were screened for 26 

PCV3. Of the Danish samples, 36/38 of the lymph nodes, 6/20 serum samples and 2/20 lung 27 
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samples tested positive. Similarly, 10/29 lungs, 20/29 organ pools, 6/33 sera and 1/8 nasal swabs 28 

tested PCV3 positive in Italy. Fourteen out of 94 serum pools from 7/14 Spanish farms were also 29 

positive. Despite the convenience nature of the sampling prevents any precise prevalence 30 

estimation, the preliminary screening of the data from three European countries confirmed a rather 31 

wide PCV3 distribution in Europe. Furthermore, the analysis of the six obtained complete European 32 

PCV3 genomes and their comparison with the public available sequences seems to support a 33 

remarkable worldwide PCV3 circulation. These results underlines once more the urgency of more 34 

extensive epidemiological studies to refine the current knowledge on PCV3 evolution, transmission, 35 

spreading patterns and impact on pig health.  36 
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Introduction 40 

The Circovirus genus includes non-enveloped viruses with a single stranded circular genome of 41 

approximatively 2kb. The tropism of these viruses was traditionally considered limited to a 42 

restricted number of avian species and to swine (Todd, 2004). More recently, circoviruses have 43 

been proven to infect several host species, belonging to different animal classes. Nevertheless, their 44 

causative role in overt clinical disease is still unclear or marginal in most instances (Delwart and Li, 45 

2012). The main exception is represented by the porcine circovirus 2 (PCV2), which has emerged 46 

as one of the most widespread and devastating diseases affecting swine farming (Segalés, 2012; 47 

Franzo et al., 2016). In 2016, a new circovirus species, named Porcine circovirus 3 (PCV3) was 48 

identified by deep sequencing in the USA (Palinski et al., 2017). Since then, several reports have 49 

described its presence in China (Zheng et al., 2017), Poland (Stadejek et al., 2017) and Korea 50 

(Kwon et al., 2017), supporting a worldwide distribution. Similarly to PCV2, PCV3 has been 51 

associated with various clinical outcomes and lesions, including porcine dermatitis and nephropathy 52 

syndrome (PDNS), reproductive disorders, respiratory signs (Palinski et al., 2017; Ku et al., 2017; 53 

Shen et al., 2017) and myocarditis (Phan et al., 2016). Nevertheless, its presence in asymptomatic 54 

animals has also been reported (Zheng et al., 2017) and definitive evidences of its virulence are still 55 

lacking.  56 

Being a single stranded DNA virus, PCV3 is expected to display a high evolutionary rate and 57 

therefore the knowledge of its molecular epidemiology is of pivotal importance. In fact, the 58 

availability of viral genome sequences represents a fundamental substratum for the understanding of 59 

viral spreading patterns and for planning adequate control measures (Kühnert et al., 2011; Scotch et 60 

al., 2011). 61 

Thus, even though PCV3  has been reported in a single country in Europe (Stadejek et al., 2017), no 62 

European PCV3 sequences are currently publicly available. To fill this gap, the present study 63 

reports the first European PCV3 complete genome sequences, obtained by the joined efforts of three 64 
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laboratories located in Denmark, Italy and Spain, further supporting the wide distribution of this 65 

virus in Europe. 66 

 67 

Materials and Methods. 68 

Samples 69 

A total of 271 samples were included in the study consisting of, 78 Danish (20 lungs, 20 serum and 70 

38 lymph nodes), 99 Italian (29 lungs, 29 organ pools, 33 sera and 8 nasal swabs) and 94 Spanish 71 

samples (serum pools). 72 

Italian samples were randomly selected archived samples delivered to the Veterinary Infectious 73 

Disease laboratory (Dept. Animal Medicine,Production and Health, Padua University, Italy) for 74 

routine diagnostic purposes between 2016 and 2017. Samples originated from sows and gilts (13 75 

samples), nursery (45 samples) and growing and finishing (41 samples) pigs. The Danish samples 76 

(lymph nodes and placenta of sows, lungs from pigs (age unknown) and serum from pigs) were 77 

delivered for different diagnostic purposes, including the evaluation of decreased farrowing rates 78 

presence of respiratory disease and PCV2 viral load quantification. The Spanish samples were part 79 

of a longitudinal study in which 4-6 serum pools per farm were obtained from pigs at the end of the 80 

nursery and/or beginning of fattening periods (starting collection at 7 or 8 weeks of age and 81 

finishing it between 12 and 14 weeks of age). Each pool corresponded to 10 animals of the same 82 

age, collected longitudinally on a weekly basis, from a total of 15 farms. All studied farms were 83 

considered healthy (no evident clinical signs) and selection of pigs to be bled was performed 84 

randomly. 85 

PCV3 diagnosis and sequencing 86 

Italian and Spanish samples were extracted using the ExtractSpin TS kit (Bio-Cell, Rome, Italy) and 87 

tested for PCV3 using the real-time PCR described by Franzo et al., 2017 (Submitted). 88 

Briefly, 2µL of extracted DNA were added to a standard mix composed by 1X DyNAmo Flash 89 

Probe qPCR Master mix, 0.6 µM and 0.3 µM of PCV3 specific primers and probe, respectively 90 
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(Table 1), 0.4 µM and 0.2 µM of internal control (IC) primers and probe (Hoffmann et al. 2006), 91 

respectively and 5 pg of IC plasmid. Sterile nanopure water was added to bring the final volume up 92 

to 10 µL. The cycling parameters were 95° C for 7 min followed by 45 cycles of 95°C for 10 sec 93 

and 60°C for 30 sec. The fluorescence signal was acquired at the end of each cycle extension phase.  94 

Danish samples were extracted as described elsewhere (Hjulsager et al., 2009) and tested for PCV3 95 

using the assay described by Palinski et al. (2017). 96 

Full genome sequencing was attempted on all samples with a Cp lower than 30 (corresponding to a 97 

viral titer of 100 copies/µL). Three primer pairs (Table 1) were used to amplify and sequence the 98 

whole PCV3 genome by three overlapping amplicons. Two µL of extracted DNA were added to a 99 

standard mix composed of 1X Phusion®High-Fidelity mix, 200 μM dNTPs, 0.6µM of each primer 100 

and 0.5 units of Phusion DNA Polymerase. Sterile nanopure water was added to bring the final 101 

volume up to 25 µL. The following thermal protocol was selected: 98° C for 30 sec followed by 45 102 

cycles of 98°C for 10 sec, 64°C for 20 sec and 72°C for 45 sec. A final extension phase of 5 min at 103 

72°C was also performed. Amplification and specificity of bands were visualized using a SYBR 104 

safer stained 2% agarose gel. DNA sequencing was performed at Macrogen (Macrogen Europe, 105 

Amsterdam, Netherlands). 106 

Data analysis 107 

All chromatograms were visually inspected with Finch TV program. 1.4.0 (2004–2006 Geospiza 108 

Inc) and consensus were obtained using the CromasPro (CromasPro Version 1.5; Technelysium Pty 109 

Ltd, South Brisbane, Australia; http://technelysium.com.au/wp/chromaspro/). The sequences 110 

were aligned with all PCV3 complete genomes available in GenBank (accessed 25/08/2017) using 111 

MAFFT (Standley, 2013), and tested for recombination using GARD (Kosakovsky Pond et al., 112 

2006). Finally, a phylogenetic tree was reconstructed using the Maximum likelihood method 113 

implemented in PhyML (Guindon et al., 2010) selecting as substitution model the one with the 114 

lowest AIC calculated using JmodelTest (Posada, 2008). The robustness of the clade reliability was 115 

evaluated by performing 1000 bootstrap replicates.  116 

http://technelysium.com.au/wp/chromaspro/
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The raw genetic distance among strain pairs was calculated using MEGA6 software (Tamura et al., 117 

2013). 118 

 119 

Results and discussion 120 

Of the Danish samples, 36 out of 38 of the lymph nodes collected from sows were PCV3 positive, 121 

as well as 6 out of 20 serum samples and 2 out of 20 lungs. Similarly, 10 out of 29 lungs, 20 out of 122 

29 organ pools, 6 out of 33 sera and 1 out of 8 nasal swabs tested PCV3 positive in Italy.  Fourteen 123 

out of 94 (15%) serum pools from 7 (50%) out of 14 tested Spanish farms were also positive 124 

(ranging from 1 to 4 positive pools, depending on the farm). Despite the convenience nature of the 125 

sampling prevented any precise prevalence estimation, the results confirmed a rather wide PCV3 126 

circulation in Europe, since it was initially detected in Poland (Stadejek et al., 2017). The virus was 127 

detected in several tissues as well as in placenta-associated lymph nodes, supporting the broad and 128 

systemic organ tropism of PCV3 (Palinski et al., 2017).  129 

All six complete genome sequences (Acc.Numbers MF805719-MF805724) were 2000 nt long and 130 

displayed two ORFs coding for 296 (Rep) and 214 aa (Cap) proteins, as previously described 131 

(Palinski et al., 2017). 132 

The sequences displayed p-distance distances from the USA isolates (Acc.Number KT869077) 133 

ranging from 0.007 to 0.01. The Italian clade (mean within-clade genetic distance = 0.001) was 134 

more closely related to strains collected in South Korea and Brazil (p-distance = 0.003) 135 

(KY996341, KY996343, KY996341 and MF079254) while the Spanish sample demonstrated a 136 

higher similarity with South Korean strains (p-distance = 0.003) (KY996341 and KY996343). The 137 

two Danish sequences (mean within-clade genetic distance = 0.004) revealed the closest 138 

relationship with strains detected in South Korea and China (p-distance = 0.006) (KY996338, 139 

KY996341, KY996338 and KY075986). A heat Map reporting the p-distance calculated between 140 

different sequence pairs of the analyzed sequences is displayed in Figure 1. 141 
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The phylogenetic tree based on the complete genome alignments demonstrated a tendency of the 142 

sequences obtained in the present study to cluster according to the country of sampling. 143 

Nevertheless, a more comprehensive analysis of the phylogenetic tree demonstrated a quite 144 

different scenario characterized by a broad mixing of strains collected in different countries and 145 

even continents. Particularly, even if the definition of a genetic cut-off is challenging and probably 146 

misleading (Franzo et al., 2014), at least two groups can be potentially defined (Figure 2), both 147 

including strains collected in North and South America, Asia and Europe. Remarkably, while 148 

Danish sequences form a quite independent clade part of the B group (Figure 2), Italian and Spanish 149 

ones were part of the A Group. Import of living pigs to Denmark is almost non-existing whereas a 150 

large number of sows have been exported to other countries, including Korea and China. This may 151 

explain the different grouping of the Danish sequences. 152 

Based on these results, a single PCV3 introduction event is an unlikely justification for the 153 

European PCV3 heterogeneity and for the phylogenetic relationship herein described. As already 154 

described for PCV2 (Franzo et al., 2015), a worldwide PCV3 circulation leading to multiple 155 

introduction events in different European countries followed by independent local evolution appears 156 

a more likely scenario. . This is further supported by the demonstration of the PCV3 infection in 157 

asymptomatic animals, which, together with the recent PCV3 identification, could have favored an 158 

undetected and uncontrolled viral circulation. 159 

Unfortunately, the paucity of currently available information hampers any definitive statement and 160 

further studies and more data will be necessary to clarify PCV3 molecular epidemiology, its origin, 161 

its impact on pig health and its transmission in and between countries and continents.  162 
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Primers/probes Oligonucleotides Assay 

PCV3_353_F 5’-TGACGGAGACGTCGGGAAAT-3’ 

qPCR PCV3_465_R 5’-CGGTTTACCCAACCCCATCA-3’ 

PCV3_418_probe 5’-FAM-GGGCGGGGTTTGCGTGATTT-BHQ1-3’ 

PCV3_74_F 5’-CACCGTGTGAGTGGATATAC-3’ PCR1 (Palinski 

et al.,2017) PCV3_927_R 5’-CAAACCCACCCTTAACAG-3’ 

PCV3_1303_F 5’-ACCGGAGGGGTCAGATTTAT-3’ 

PCR2 

PCV3_541_R 5’-GAGCTGCTGCTTGAAGATCC-3’ 

PCV3_817_F 5’-GTTATAATGGGGAGGGTGCT-3’ 

PCR3 

PCV3_1647_R 5’-GCCTGGACCACAAACACT-3’ 

Table 1 239 

Primers and probes implemented in the assays described in this study. 240 

 241 

 242 

 243 

Captions 244 

 245 

Figure 1) Heat Map reporting the p-distance calculated between different sequence pairs. The 246 

relationship among strains is displayed through the maximum likelihood phylogenetic tree based on 247 

the full PCV3 genome. 248 

Figure 2) Maximum likelihood phylogenetic tree based on the full PCV3 genome. The branch 249 

support is displayed in grayscale with darker black indicating higher bootstrap values. Danish, 250 

Italian and Spanish sequences are highlighted in blue, red and yellow, respectively. 251 
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