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• Digital images objectively analyse color 
changes for olive ripening. 

• CACHAS offers reproducible MI assess
ment, replacing visual inspection. 

• R, G, and B histograms determine MI of 
olives in CACHAS. 

• A methodology potentially applicable to 
other fruits is proposed. 

• Study confirms digital images’ capa
bility for accurate fruit ripeness 
prediction.  
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A B S T R A C T   

Digital images are commonly used to monitor processes that are based on colour changes due to their simplicity 
and easy capture. Colour information in these images can be analysed objectively and accurately using colour 
histograms. One such process is olive ripening, which is characterized by changes in chemical composition, 
sensory properties and can be followed by changes in physical appearance, mainly colour. The reference method 
to quantify the ripeness of olives is the Maturity Index (MI), which is determined by trained experts assigning 
individual olives into a colour scale through visual inspection. Instead, this study proposes a methodology based 
on Chemometrics Assisted Colour Histogram-based Analytical Systems (CACHAS) to automatically assess the MI 
of olives based on R, G, and B colour histograms derived from digital images. The methodology was shown to be 
easily transferable for routine analysis and capable of controlling the ripening of olives. The study also confirms 
the high potential of digital images to understand the ripening process of olives (and potentially other fruits) and 
to predict the MI with satisfactory accuracy, providing an objective and reproducible alternative to visual in
spection of trained experts.  
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1. Introduction 

Digital images have become a popular method to monitor processes 
since they are simple and easy to capture and can provide a measure
ment that reflects adequately phenomena that can be easily observed by 
the human eye. Besides, digital cameras are found in most commonly 
used electronic devices, which makes this technology available for any 
potential user. Digital image analysis has already been applied in food 
and agriculture for classification of samples of tea, honey or grain, and in 
other areas such as biomedicine and microbiology for the detection of 
cancer cells or different types of bacteria and yeast, even as a detector for 
biosensors, determining allergens in food, or other biomolecules using 
ELISA assays, which makes it a high-potential technology with multiple 
applications yet to be investigated [1,2]. 

A digital image is formed by a collection of small units of information 
called pixels. Each pixel is defined by two spatial coordinates (x and y) 
with associated colour information, represented in a three-dimensional 
colour space, typically Red, Green and Blue (RGB). This means that any 
colour can be represented by a linear combination of these three basic 
colours. Additionally, images can be stored in various file formats, such 
as JPEG or PNG, and can be easily shared or transferred digitally. Even if 
the images using the JPEG format are compressed in a lossy way, this is, 
some information about the pixels is lost in the process, and the ones 
using PNG are lossless; it does not affect the final results as in these 
images the noise is not significant and even with a lossy compression the 
information of interest is conserved [3]. 

Data analysis provides many tools for the interpretation of the colour 
information in an objective and accurate manner. One of the most 
common ways to study the colour information of an image is the use of a 
colour histogram, made representing the frequency of the R, G, and B 
values in bin intervals that cover the full colour scale (0–255) for the 
ensemble of pixels of the Region of Interest (ROI) in the image. These 
histograms are really useful when the colour distribution of a hetero
geneous image is studied, since not only the main or average colour in 
every RGB coordinate is measured but the variability of these color 
values across the full image. There are several analytical approaches to 
study the colour histograms, e.g., applying first order statistics to the 
RGB histograms, combining the RGB histograms with other colour- 
spaces (grayscale, HSV, CMYK …) where the result is called “colour
gram” [4], or using just the RGB histograms as a multivariate data input 
for further chemometric analysis [1]. 

Food chemistry is a field where changes of colour are often related to 
natural phenomena affecting the characteristics and the quality of food 
products. One of the processes where colour plays a major role is fruit 
ripening, where it can be the most important indicator of maturity and 
quality in many fruit species [5]. The colour of a fruit, particularly ol
ives, is mainly influenced by the concentration and distribution of 
various anthocyanins, chlorophylls and carotenoids in the skin and 
flesh, which evolve throughout the ripening process [6]. Olive ripening 
is a complex and dynamic process that occurs during the final stages of 
the development of the fruit, and it is characterized not only by changes 
in colour but by a series of changes in the olive physical aspect, chemical 
composition and sensory properties. These changes are influenced by 
several environmental and genetic factors, including temperature, light 
exposure, watering and olive cultivar [7,8]. 

The ripening process starts when the olive fruit reaches full size and 
begins to change colour, typically from green to red or black. Over time, 
the skin and flesh of the fruit soften, and its flavour and aroma become 
more pronounced [9]. These changes are accompanied by a series of 
biochemical reactions, including the synthesis and breakdown of pig
ments, fatty acids and volatile compounds [10]. Ripe olives contain a 
higher percentage of oil and a lower percentage of water, which results 
in a higher yield of oil per batch of olives. Additionally, ripe olives also 
have a milder, fruitier flavour compared to unripe olives, which can be 
bitter. Therefore, assessing the ripeness of olives is crucial to ensure that 
only the highest quality olives are used to produce oil, resulting in a 

better tasting and higher quality oil [6]. 
The Maturity Index (MI) is a common parameter to quantify the 

maturity of olives and, thus, to determine their stage of ripeness [11]. 
This index is based on the perception of trained experts, which assign a 
colour value between 0 and 7 to every individual fruit of a set of 
randomly sampled olives. The MI is finally obtained by doing a mean of 
the colour values assigned to each individual olive of the set studied. 
Since MI is a parameter purely based on colour, the colour captured on 
digital images of olives is expected to relate to their MI; and a method to 
assess the MI based on this could be a better way to carry out the analysis 
since it is more objective and reproducible. 

Methodologies to automatically assess the MI of olives based on 
infrared spectroscopy and digital images have been proposed [12]. Some 
of them are based on studying the pixels of individual olives one by one, 
assigning them a value in the colour scale to calculate the MI [13,14]. 
These approaches have the inconvenience of having to image olives 
separately or having to implement an automatic shape recognition al
gorithm or doing a manual separation of olives before acquiring the 
image of the total olive set. Other authors have analysed the percentage 
of black olives in a collective image applying a k-nearest-neighbours 
strategy on individual pixels [15]. 

Instead, this article proposes a methodology based on Chemometrics 
Assisted Colour Histogram-based Analytical Systems (CACHAS). R, G 
and B colour histograms can be derived from the single RGB image ac
quired on the set of randomly selected olives without the need of 
separating the individual fruits, in this way the whole population of 
olives in the sample is represented in the analytical signal and the het
erogeneity of the sample is considered. In addition, the histograms thus 
obtained can be straightforwardly used as multivariate inputs to apply 
different chemometric techniques. As a first step, an exploratory 
approach applying principal component analysis (PCA) was used to 
study trends in the data. Then, multivariate curve resolution was applied 
as an unsupervised method oriented to model the evolution and the olive 
color change associated with the ripening process based on the use of 
color histograms obtained as a function of the ripening time. Finally, a 
partial least squares regression model was applied to assess the potential 
of quantitative estimation of the maturity index from the information in 
the color histograms of the analysed samples. The methodologies pro
posed allow assessing the ripening stage of olives (and potentially other 
fruits) using the images acquired by any user, making the approach 
easily transferable for real routine purposes, and providing a fast and in 
situ method to control the cultivation and processing of olives, ulti
mately benefiting both farmers and consumers. 

2. Material and methods 

2.1. Olives 

Two sets of olives have been studied: data set A formed by olives of 
different varieties and data set B, formed by olives of a single variety 
monitored over time. Data set A is formed by seven varieties of olives 
grown in Catalonia, Spain, which are ‘Arbequina’, ‘Coratina’, ‘Corbella’, 
‘Empeltre’, ‘Koroneiki’, ‘Morrut’ and ‘Picual’ (see Fig. 1a). For each vari
ety, several samples from the Camp de Tarragona production area 
(Spain) were analysed in three different ripening stages differenced by 
approximately three weeks. Samples from the year 2021 are included in 
the calibration set and samples from the year 2022 are used for vali
dation purposes. 

Since olives are a non-climacteric fruit, this is, they do not ripen once 
they are collected [16], they were harvested directly from the tree in 
each sampling point. A sample consists of a few hundreds of olives 
randomly collected from different positions in a single tree, placed in a 
box to be subsequently imaged. 

Data set B was formed by a single variety of olive, ‘Arbequina’, for 
which 120 samples (collected in the same way) were analysed over three 
months in different ripening stages (see Fig. 1b). The samples were 
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collected in 12 different olive mills from the Garrigues (Lleida, Spain) 
designation of origin, randomly at different moments in each mill to 
ensure that the full ripening process is covered and the inter-mill vari
ability is considered. 

2.2. Digital images 

The digital images of the data set B, including the same olive variety 
from the 12 olive mills, were obtained once the sample arrived at the 
mill (indoors), by placing the sampled olives in a box and taking the 
image from above at around 30 cm. Neither position, distance nor 
lighting were controlled since the images were taken by mill workers for 
regular routine control purposes and not specifically for this study. This 
means the images obtained have different number of olives, different 
number of pixels that contain olives and different lighting conditions. 
The images acquired were taken with several Zebra ET56 tablet com
puters (Zebra Technologies Corporation, Illinois USA), all with the same 
model of tablet but different devices. Since the images were taken to 
have a visual register of a routine analysis of the olives, not only olives 
but also labels, leaves and the corners of the boxes and the table can 
appear in the images. Therefore, the ROI of the images has been selected 
by cropping them to contain mainly olives. 

On the other hand, the images of data set A, including the set of 
several olive varieties, were taken with an iPhone 6 plus (Apple Inc., 
California USA) in 2021 and with an iPhone 12 in 2022. In this case, 
since the images were taken after removing impurities from the olives 
(as it can be seen in Fig. S4), the images did not need to be cropped. 

2.3. Colour histogram 

To obtain the colour histogram of each image, the frequency of 
occurrence of each value between 0 and 255 in the R, G and B channels is 
represented. Other channels as HSV were tried obtaining suboptimal 
models, so the results are not shown. The bin of the histograms was 
augmented to four units to avoid the presence of null frequencies at 
some particular R, G and B values that may cause a distortion in the 
global form of the histogram (see Fig. S2). This action has a smoothing 
effect and removes zero values. In all cases, since the total number of 
pixels may differ between images due to the cropping step, the histo
grams were normalized by their Euclidean norm (2-norm). The 
normalization was carried out after concatenating the R, G and B 

histograms one after the other, that is, by following a low-level data 
fusion strategy, as shown in Fig. 2 [17]. 

In total, two datasets (X-blocks) were built using this data processing, 
one for each olive set described. Both datasets have samples in rows and 
values of R, G and B channels in columns. There are 189 variables in 
total, as there are 768 RGB values but each bin covers an interval of four 
values and the last bin of each colour channel was removed because it 
contains the white pixels that are caused by direct light reflection and do 
not contain any information of interest. 

2.4. Maturity index 

To assign a MI to each one of the collected samples for both data sets, 
a group of trained experts applied, the reference method for assessing 
olive ripening based on the method proposed by Uceda and Frías (1975) 
[11]. Thus, 50 olives were taken randomly from the box and each olive 
was assigned a value between 0 and 7 based on a colour scale of skin and 
flesh, where 0 is not mature at all and 7 is fully matured. Then, MI was 
calculated as: 

MI=

∑7

i=0
Ni ∗ i

N
Eq. 1  

where i is the value assigned in the scale, Ni is the number of olives with 
value i assigned and N is the total number of olives analysed. 

2.5. Chemometric algorithms 

Based on the information contained in the colour histograms, the 
potential of several algorithms to explore and interpret the olive 
ripening process was tested. First, Principal Component analysis (PCA) 
was applied as it is one of the most general unsupervised data explora
tion methods and points out to general trends occurring in any data set 
(presence of outliers, detection of relevant color variables and process 
points). Then, Multivariate Curve Resolution (MCR) was used to model 
in a much more interpretable way the process evolution and the color 
change associated with the different ripening stages of olives taking 
advantage of the inclusion of some general characteristics known about 
the process evolution and the color histograms under the form of con
straints. Finally, the feasibility to predict the MI using color information 
was tested using the Partial Least Squares Regression method, since it is 

Fig. 1. Examples of digital images from the datasets used in the present work. a) Data set A: images of the seven olive varieties in a medium ripening stage. b) Data 
set B: images of Arbequina olives ripening during time. 
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an algorithm that intends to maximize the covariance between the col
ourgram and MI, finding the model that best correlates both kinds of 
information. 

Principal Component Analysis (PCA) is a statistical technique used to 
analyse the information contained in data tables formed by a set of 
samples described by the measurement of a set of variables. It is often 
used as a dimensionality reduction method, meaning that it reduces the 
complexity of the data by transforming it into a lower-dimensional space 
in order to help identifying patterns in the data. In PCA, the relevant 
information of the variables of the original data set are expressed by a set 
of new, uncorrelated variables called Principal Components (PCs). These 
principal components are found by looking for the directions of 
maximum variance of the original data. Afterwards, samples can be 
projected in this new dimensional space to be easily visualized [18,19]. 
A PCA model is mathematically described as:  

X = TPT + E                                                                              Eq. 2 

where X is the matrix of original data (colour histograms of the different 
samples in our case), T are the scores matrix, which allows visualizing 
the samples in the principal component (PC) space and PT the loadings 
matrix, which allow representing the original variables in the PC space. 
E is the variance unexplained by the PCA model. 

Multivariate Curve Resolution - Alternating Least Squares (MCR- 
ALS) is a statistical technique used to decompose a matrix of multi
component data into its individual components. The original data (X- 
block) is decomposed in concentration profiles (C) and spectral 
(response) profiles (S) in the following way:  

X = CST + E                                                                              Eq. 3 

where E is the residual matrix. This decomposition is carried out itera
tively under suitable constraints, such as non-negativity, unimodality … 
that help to recover chemically meaningful concentration and response 
profiles, readily interpretable as the pure components of the initial data 
set. MCR-ALS is often used to characterize qualitative and quantitatively 
the individual components in complex mixtures, and to identify and 
understand the evolution of components in a process [20,21]. 

The Partial Least Squares (PLS) method seeks to calculate latent 
variables that maximize the covariance between the information gath
ered in an X-block, e.g. colour histograms, and the reference values of 
the dependent variable (Y-block), e,g. MI. These LVs can be used to build 
a Regression model (PLSR) to predict the value of the dependent vari
able Y from the measured information in the X-block. This method is 
particularly useful in situations where the X-block contains a large 
number of correlated variables, or when the nature of the samples 
studied and the relationship between X and Y is complex. PLSR can be 
used to predict the value of the dependent variable with great accuracy 
and to identify the most important variables to carry out the prediction 
task [22,23]. 

These three techniques are used to analyse and interpret complex 
data sets in order to understand the relationships between variables, 
identify patterns in the data, or make predictions. All software used ran 
under MATLAB environment. Routines in MATLAB 9.11 were used for 
data processing (image cropping, data arrangement and data fusion), the 

PLS_toolbox 9.0 (Eigenvector Research) for PCA and PLSR and the free 
downloadable MCR-ALS GUI 2.0 for MCR-ALS analysis [20]. 

3. Results and discussion 

3.1. Principal component analysis 

PCA was conducted on data set B, formed by the colour histograms of 
the images related to a single olive variety collected in 12 different mills 
as a function of time, after mean centring the data. The goal was un
derstanding the main trends linked to the olive ripening process and 
only the first component was needed (which explains 52.70 % of the 
variance), since the following ones did not add any interpretable in
formation about the ripening process. The results showed that the evo
lution of the scores of the first component of the RGB histogram are 
directly related to the ripening of the olives, as it can be seen when the 
scores are represented against the MI assigned to the different images 
(Fig. 3a). This happens because as olives ripen, their colour evolves from 
green to black, and this is the main source of variability in the image 
histograms, as it is reflected in the loadings of the first component 
(Fig. 3b). The loadings show positive peaks related to the dark RGB 
values (closer to zero), which can be related to the colour (red-black) 
obtained from an increasing concentration of anthocyanins during the 
ripening process, and clear negative peaks at higher values of Green and 
Red in the RGB scale, which can be related to the colour (yellow-green) 
obtained from a decreasing concentration of chlorophylls and caroten
oids during the ripening process [6]. The blue channel does not show a 
very significant variation during ripening, seen through the lower in
tensity of their related loading values. 

The olive ripening, as most biological processes, follows a sigmoid 
curve, where the properties of the green fruit stay constant for a period 

Fig. 2. RGB histograms (bin 4) of the images from data set A after low-level data fusion and normalization.  

Fig. 3. First Principal Component (PC1) of the PCA performed on data set B. a) 
Scores of the RGB histograms vs. their maturity index. b) Loadings of each of 
the RGB values of the histograms. 
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of time, evolve gradually into the ripe form, to be stabilized when 
maturity has been reached. This pattern is well described with the scores 
of PC1, which means that the variation of the colour histograms reflects 
adequately the ripening process. In addition, it can be observed that 
there is no difference among the evolution shown by images acquired on 
samples from different mills, since all of them follow the same sigmoid 
pattern. Therefore, the ripening curve observed in this PCA does not 
differ according to the olive mills. On one hand, this means that ripening 
happens in a similar manner among olives of the same designation of 
origin; on the other hand, it also implies that the scale variations of 
colour histograms due to differences in image acquisition (e.g., different 
user, number of pixels containing olives, illumination conditions, …) are 
properly corrected by the histogram normalization. 

3.2. Multivariate curve resolution 

When it comes to process modelling, MCR is a better tool since the 
concentration profiles and pure responses can be constrained using the 
information obtained from experience and literature about the system 
under study. When studying the ripening process monitored in data set B 
by MCR-ALS, the initial data are the table of colour histograms ordered 
according to their related MI. The MCR model provides concentration 
profiles (C) related to the evolution of the ripening process and response 
profiles (ST), which will be the colour histograms representing the 
components linked to the different stages of the ripening process. By 
calculating the eigenvalues using a Singular Value Decomposition (SVD) 
on the initial matrix of colour histograms, it was concluded that the 
ripening process can be modelled using two components. Then, a 
(SIMPLe-to-use Interactive Self-modelling Mixture Analysis) 
SIMPLISMA-based purest variable detection method was applied to 
obtain the spectral profiles to be used as initial guesses in the iterative 
optimization of the MCR-ALS algorithm [24]. Since the concentration 
profiles of a process and the related pure colour histograms cannot be 
negative, a non-negativity constraint was applied both to the spectral 
and concentration profiles. Additionally, since the samples were sorted 
in increasing MI order in the input matrix X, the unimodality constraint 
was applied to the concentration profiles reflecting that olive ripening is 
a continuously progressive process, i.e, when the olives ripen, they 
cannot go back in the maturity stage. Therefore, the concentration 
profiles should have a single maximum. However, since ripening is a 
biological process and the data used correspond to different olives at the 
different maturity stages and involves images taken in a non-controlled 
environment, a mild deviation from a perfect unimodal shape in the 
concentration profiles was allowed. 

The concentration profiles obtained from the MCR-ALS model are 
plotted against the related MI values (Fig. 4) to study the evolving curves 
of the two components during the ripening process. Component 1 
(purple) is associated with unripe olives and component 2 (orange) to 
ripe olives, as it can be concluded from the evolution of their related 

concentration profiles. The sigmoid curve derived from the concentra
tion profile of the ripe olives can be used to accurately model the 
ripening process of olives and to understand the time at which the olives 
will reach their peak ripeness. Additionally, by analysing the shape and 
slope of the curve, it may be potentially possible to identify factors that 
affect the rate of ripening, such as temperature and humidity, and 
develop strategies for optimizing the process. 

When olives ripen, the concentration of pigments such as anthocy
anins increases since the oil accumulates in the fruit, while the con
centration of other pigments, such as chlorophylls and carotenoids, 
progressively decreases due to the reduction of photosynthetic activity 
[6]. This shift in pigment composition results in a change in the colour of 
the olives from green to red or black. Since the concentration of the 
pigments that give olives their green colour decreases, the curve will 
gradually descend, eventually reaching a point where the concentration 
of the pigments that give olives their dark colour dominates. Such an 
evolution of the olive colour when ripening is clearly seen in the pure 
colour histograms associated with the components 1 and 2 (see Fig. 5). It 
is interesting to notice that only two components with evolving in
tensities (concentrations) during the ripening process are needed to 
describe the olive ripening process. This fact can help us to discard the 
presence of intermediate species that could have appeared if some in
termediate stage involving the presence of completely different pig
ments had been involved in the ripening process. 

As it can be seen in Fig. 5, the colour histogram of unripe olives 
(Component 1) shows high Red and Green values and low Blue values, 
providing a typical olive green colour when the maximum values of the 
R, G and B colour histograms are represented (as seen in the related 
square of Fig. 5). Ripe olives (Component 2), instead, show higher fre
quencies at low Red, Green and Blue values, corresponding to very dark 
colours, close to black. 

The MCR resolved colour histograms can be additionally used to 
connect the colour information of the global image to the colour of in
dividual pixels. In this way, it is possible to perform a fast approximate 
identification of pixels corresponding to unripe (green) olives and to ripe 
olives by comparing the RGB values of the individual pixels with those in 
the resolved MCR histograms. This comparison was carried out taking as 
a reference the maximum value of R, G and B in the histograms of the 
unripe and ripe olive components and setting an interval around these 
points that comprehends one quartile of the values. In this way, two sets 
of RGB values and their confidence intervals were defined, one for the 
ripe (dark) olives and another for the unripe (green) olives. Thus, any 
individual pixel in the image that presented the three R, G and B values 
inside the pre-set intervals for one of the resolved components, was 
classified as belonging to dark olives or to green olives. When this was 
not the case, the pixel was left as unassigned, as it can be seen in Fig. 6. 
Such an approach, although not being the central objective of this work, 
can be a simple approximate manner to connect the global colour of the 
image with the individual pixel information. 

3.3. Partial least squares regression 

Scores from PCA showed that colour histograms clearly reflect the 
evolution of the maturity index. In turn, the concentration profiles and 
the colour histograms obtained in the MCR model were clearly related to 
the colour variation undertaken by olives during the ripening process 
and, hence, to the evolution of the Maturity Index. Taking this into ac
count, a PLSR model appeared as a potential tool to find the quantitative 
relationship between MI values and the information provided by the 
colour histograms. 

To explore this possibility, a PLS calibration model between the 
colour histograms (X) and the maturity index, MI (Y) was built. As a 
calibration set, the dataset made up of olives of seven different varieties 
at three ripening stages in the same year (2021) was used. For this 
model, only mean centring was used for the X-block, this is, for the 
histograms, as well as for the Y-block. The model was cross-validated 

Fig. 4. Evolution of the relative concentrations of the two components derived 
from the MCR-ALS decomposition of the colour histograms of the olive ripening 
process monitored in data set B. 
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(CV) using a 10-fold cross-validation, and the CV predictions can be seen 
in blue dots in Fig. 7a. Only the first LV was included, since it explained 
around 90 % of the Y-block variance and the CV error did not decrease 
significantly with more LVs. The external validation of the model was 
carried out using a validation set formed by images taken during the 
year 2022 on samples related to the same olive varieties and area as 
those in the calibration set. 

As can be seen in red squares in Fig. 7a, the predictions for this 
external test set show that this model could be used for the on-site 

prediction of olive MI since the prediction RMSE (0.3) is low enough 
for routine analysis, and even more considering the subjectivity of the 
reference method. It has to be said that in 2022 the sampling started 
later in the year, so some of the olives had a MI too high to be predicted 
with this model and they were removed from the validation set so as not 
to extrapolate any result. When comparing the CV predictions and 
external validation predictions (Fig. 7a) it can be seen that the two 
campaigns are overlapped, this is, there is no major bias when using the 
model calibrated with the samples from 2021 for predicting the MI of 
samples from 2022. 

In addition, to assess the heterogeneity that corresponds to the olives 
sampled, each image was divided in four quadrants, since there are 
around 50 olives per quadrant in this set of images (Fig. S4). Based on 
this division, a new PLS model was built for MI prediction taking into 
consideration as individual samples the colour histogram of every 
quadrant of the image, which was related to the same MI value. In this 
case, the cross-validation was carried out using a venetian blinds strat
egy, taking into account that all four quadrants of the same image were 
at the same time either used to perform the model or used for external 
prediction. The predictions performed with this new model can be seen 
in Fig. 7b. 

Fig. 7b shows that there is a variability associated with the sampling 
of olives, but it is not significant when the image contains at least 50 
olives. In this case the average relative standard deviation (RSD) be
tween quadrants is below five percent (4.2 %). 

Moreover, the conclusions that can be obtained from the Regression 
Vector coefficients of this PLSR model, as shown in Fig. 8, are similar to 
those obtained from observing the spectral profiles of the two compo
nents obtained from the MCR-ALS algorithm. The histograms of all three 
channels (RGB) can be divided in two parts: a peak in the lower values, 
which is associated with dark pixels (as previously discussed, related to 
anthocyanins) and is positively correlated to the MI, and another peak in 
the higher values (as previously discussed, related to chlorophylls and 
carotenoids), negatively correlated to the MI. It can also be appreciated 
that the coefficients linked to the Blue part of the histogram are clearly 
closer to zero than those related to the Green and Red part, which were 

Fig. 5. MCR-ALS spectral profiles related to the two components needed to model the evolution of different pigments during the olive ripening process monitored in 
data set B. The colour associated with the maximum R, G and B values for each component is represented in the squares located at the right of the legend. 

Fig. 6. Separation of the pixels of an olive image of data set B as belonging to 
green or dark olives, based on the information obtained in the resolved MCR 
colour histograms. Pixels in black were unassigned. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 7. MI predictions of images of olives of different varieties using a PLSR model against their measured MI. In blue circles, the 10-fold cross-validated predictions 
of the 2021 campaign images. In red squares, the validation predictions of the 2022 campaign images. a) using the whole images b) using the images divided in four 
quadrants to simulate sampling replicates. 
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seen to be the colours that varied the most during the olive ripening 
process. This qualitative information shows that the model is consider
ably robust, since the regression vector is very smooth and consistent 
with the physicochemical properties associated with the olive ripening 
process. 

4. Conclusions 

This study has confirmed the high potential of digital images to 
understand the olive ripening process and to predict the Maturity Index 
with a satisfactory accuracy. The tests carried out have proven that this 
methodology is easily transferable for routine analysis since the results 
obtained are not significantly affected by variations induced in the 
digital images due to differences in environmental conditions and user 
expertise in the image acquisition process. These promising results 
suggest the possibility to propose prototypes combining image and 
incorporated models for MI predictions on-site, providing more objec
tive and reproducible results than those obtained through visual in
spection of trained experts [11]. 

The combination of digital images and multivariate curve resolution 
(MCR-ALS) was very useful to model the ripening process of olives, 
providing valuable insights to understand the underlying changes in 
composition that occur along ripening time. In particular, through the 
interpretation of colour information, MCR was able to model accurately 
the changes in colour components related to the reduction of chloro
phylls and carotenoids and to the increase of anthocyanins [6]. Further 
research is needed to fully understand the underlying mechanisms of 
olive ripening and to explore the potential applications of these tech
niques in a practical setting, but it can be envisioned that this kind of 
modelling can help to interpret differences in ripening among olives 
from different varieties and subject to different climatic conditions. 

Additionally, the use of colour histograms as seeding information to 
predict the maturity index was also shown to be effective. By analysing 
the colour of the olives at different stages of ripening, it was possible to 
accurately predict their Maturity Index and thus their readiness for 
harvest. 

In conclusion, the use of chemometrics based on the information 
provided by colour histograms can provide valuable insights into the 
ripening process of olives and can be used to predict maturity index. The 
methodologies proposed have the potential to improve the under
standing of the olive ripening process and to support the development of 
more efficient and sustainable olive production practices. 
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