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Abstract

1. Temporary rivers (TRs) have been largely overlooked in conservation

assessments. Because TRs are such dynamic ecosystems, spatial and temporal

aspects of their hydrology and ecology need to be taken into account when

designing conservation plans.

2. The aim of this paper is to propose a set of recommendations that could be useful

for managers to do this, using seasonal diatom and macroinvertebrate data from

north-eastern Spain as a case study. Beta diversity was partitioned into local and

species contributions to beta diversity (LCBD and SCBD). Additionally, priority

conservation sites covering the spatial distribution of all species were identified

using Marxan and the selection frequency (MSF) of the sites served as a measure

of the relative irreplaceability of each site.

3. Using both approaches (beta diversity and Marxan), the effects of changing

spatiotemporal connectivity and habitat heterogeneity on the selection and

prioritization of sites to be conserved were assessed.

4. It was found that LCBD and MSF ranged widely both in space and time. However,

LCBD and MSF were weakly related. Marxan adequately represented all taxa by

selecting a few sites, while LCBD selected communities with higher

differentiation but not necessarily those with rare species. In addition, SCBDs

assigned low values to rare taxa, thus care must be taken when using this index

for conservation planning.

5. Spatiotemporal connectivity and local habitat heterogeneity played a critical role

at the regional and local scales, driving site prioritization.

6. Overall, we recommend: 1) monitoring multiple hydrological phases to encompass

the different community types and capturing total diversity; 2) using Marxan and

LCBD in combination, to benefit from their complementary insights; and 3)

integrating spatiotemporal isolation and habitat heterogeneity into conservation
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plans, since they are the main drivers of community variation over space and time

in TRs.
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1 | INTRODUCTION

Preserving freshwater biodiversity is one of the most pressing global

challenges of our time (IPBES, 2019). Pressures on freshwater

biodiversity and freshwater habitats have exponentially increased

during the last decades, mainly due to habitat destruction,

fragmentation, pollution, invasive species, and overexploitation

(Albert et al., 2021; Harrison et al., 2018). Consequently, freshwater

species are disappearing at alarming rates (over 83% have become

extinct since 1970), faster than their marine and terrestrial

counterparts (Harrison et al., 2018). This is expected to worsen in the

future, as a result of climate change and increasing human water

demands (Dudgeon, 2019). Within this context, there is an urgent

need to improve current conservation efforts to address the particular

management needs of freshwater ecosystems, mostly overlooked

under current conservation priorities (Hermoso et al., 2016).

Temporary rivers (hereafter TRs) are generally described as

watercourses that stop flowing in both space and time (Acuña

et al., 2014; Datry, Bonada & Boulton, 2017), and are also known as

non-perennial, intermittent, ephemeral, or episodic. TRs are one of

the most common freshwater habitats in the planet (Messager

et al., 2021), and they are expected to become even more widespread

in the future because of water scarcity (Kumar et al., 2014;

Mekonnen & Hoekstra, 2016; van Vliet et al., 2021). TRs are

characterised by shifting wet and dry phases (Gallart et al., 2012),

which change spatiotemporal hydrological connectivity (Cunillera-

Montcusí et al., 2023), constraint species dispersal, and affect

metacommunity dynamics (Cañedo-Argüelles et al., 2020). This

dynamism can have challenging implications for the conservation and

biomonitoring of TRs (Datry et al., 2023) because available habitats

and species to be potentially protected and/or used as bioindicators

change dramatically in space and through time. Additionally, TRs are

among the most damaged and vulnerable freshwater habitats in the

world (Datry et al., 2014; Fovet et al., 2021; Skoulikidis et al., 2017).

Despite some efforts have been done in some parts of the world

(e.g., partial recognition in the EU Water Framework Directive and

Habitats Directive; Fritz et al., 2017), they still remain neglected by

policy-makers (Datry et al., 2023; Leigh et al., 2015), and conservation

plans have largely ignored them (Bruno et al., 2022). The few existing

studies on the conservation of TRs argue that priority sites for

conservation can vary over time in these ecosystems (Rodríguez-

Lozano et al., 2023; Ruhí et al., 2017). For example, when present,

disconnected pools might play a vital role as biodiversity refugia

during the dry season (e.g., fish or amphibians) (Bonada et al., 2020;

Hermoso et al., 2013), or can be used as stepping-stones habitats,

favouring connections across the disconnected river network (Datry,

Boulton, et al., 2017; Sánchez-Montoya et al., 2022). However, the

integration of spatiotemporal changes of TRs into conservation plans

remains neglected.

There are different conservation approaches that could be used

to select and prioritise sites to be preserved. One of them is to

partition beta diversity to obtain the relative contribution of sites or

species as in Legendre & De Cáceres (2013). This framework allows

assessing the relative contribution of each sampling unit to beta

diversity, that is, local contribution to beta diversity (LCBD), and the

relative contribution of each species to beta diversity (SCBD).

Considering a set of sites (i.e., regional scale), LCBD is an indicator of

the biological uniqueness of each site, that is, a very different

community composition compared with the regional mean. Thus,

large values of LCBD could be considered as indicators of priority

sites for conservation (high LCBD and high alpha diversity) or species-

poor sites with restoration needs (high LCBD and low alpha diversity)

(Legendre, 2014; Legendre & De Cáceres, 2013). The LCBD value

identifies relatively unique communities in terms of their community

differentiation, although not necessarily the communities with the

rarest species. Therefore, setting conservation priorities based only on

LCBD could lead to underrepresenting these rare species, which are

often the most threatened ones. Importantly, LCBD values can

change over time, reflecting metacommunity dynamics processes

(i.e., habitats that may operate as sources, or sinks, to whole river

networks) (Ruhí et al., 2017). In turn, SCBD indicates species with

high variation in abundance between different sites in a region.

Usually, species with high SCBD values have a large, or moderate,

occupancy across sites and high abundance, resulting in the most

important species contributing to the uniqueness (LCBD) of the

different sites (Heino & Grönroos, 2017). These beta partitioning

approaches have increasingly been used for identifying conservation

sites based on different organisms, such as diatoms and

macroinvertebrates (Heino & Grönroos, 2017; Rodríguez-Lozano

et al., 2023; Vilmi et al., 2017), fish (Xia et al., 2022), terrestrial

arthropods (Sánchez-Montoya et al., 2020), and terrestrial plants (Kirk

et al., 2021).

An alternative approach for selecting and prioritising sites to be

conserved are systematic planning (Margules & Pressey, 2000), which

have been used in rivers (Linke et al., 2011) and, only recently, in TRs

(Bruno et al., 2022). Among these tools, one of the most widely used
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is Marxan (Ball et al., 2009), which relies on the principle of

complementarity to find the best combination of sites to be protected

to meet a set of conservation targets at the minimum cost. Unlike

LCBD-based approaches, Marxan may be used to identify priority

sites based on a specific predefined target, rather than just

considering sites very far from the median community composition in

a regional pool. Thus, Marxan-based conservation planning may be

particularly beneficial when community composition (and thus

centroids) vary strongly over space and time and the main

conservation target is total regional gamma diversity.

In this study, we aim to propose a set of recommendations that can

be useful for managers when designing conservation plans in TRs. To

do so, the above-mentioned conservation prioritisation approaches

were used to identify priority conservation sites in TRs, and to assess

the effects of changing spatiotemporal connectivity on the selection

and prioritisation of sites. Since connectivity plays an important role in

structuring aquatic communities in TRs (Cid et al., 2022), the focus was

on two groups of organisms with contrasting dispersal abilities: diatoms

and macroinvertebrates. Diatoms are widely dispersed (Bogan

et al., 2017; Kristiansen, 1996) by water flow, wind, or animal vectors

such as mammals and birds (Leone et al., 2014; Liu et al., 2013;

Manning et al., 2021; Romero et al., 2003). Macroinvertebrates have

two main dispersal modes (Bilton et al., 2001): i) active dispersers

(e.g., adult dragonflies) can reach very long distances and they usually

fly oriented upstream (Bogan & Boersma, 2012; French &

McCauley, 2019); whereas ii) passive dispersers (e.g., larvae of non-

biting midges) might drift downstream (Brown et al., 2011; Sarremejane

et al., 2020) or restrict their movements to the benthic zone (Kappes &

Haase, 2012).

Firstly, we hypothesised that priority conservation sites and

species should change across seasons in response to changes in

hydrological conditions, because drying determines biodiversity and

habitat availability (Leigh & Datry, 2017; Ruhí et al., 2017). This would

suggest that conservation actions should be adaptive and priority

sites to be conserved should vary in space and time. Secondly, we

hypothesised that both conservation approaches mentioned above

are complementary. Whereas LCBD can identify sites with unique

species composition, systematic planning tools are based on the

complementarity principle and, therefore, these sites might not

necessarily be selected. In addition, SCBD is not designed to select

rare species but those that occur in a moderate number of sites in

high abundances or have narrow niche breadth (Pozzobom

et al., 2020; Xia et al., 2022), whereas rare species could be used as a

selection criteria in systematic planning tools. Thirdly, we

hypothesised that environmental drivers behind selected sites could

inform us whether the conservation of local habitat or spatiotemporal

connectivity should be preserved (or enhanced) to ensure current

conservation status. For example, when local habitat variables are

relevant, measures to enhance habitat diversity or to improve water

quality should be implemented, whereas if drying is important,

measures should consider solutions that reduce its effects and

increase connectivity (Datry et al., 2015).

2 | METHODS

2.1 | Study area

The study was carried out in the Sant Llorenç del Munt i l'Obac

Natural Park, a 140 km2 protected area in northeast Spain with a

typical Mediterranean climate (i.e., dry summers and heavy rains

during autumn). The geology of the area is mainly karstic with

permeable substrates (Anglés et al., 2017), but with abundant

exposed bedrock in some areas. The flora of the natural park is

typically Mediterranean, dominated by evergreen oaks (Quercus ilex)

and several species of pines (Pinus halepensis, P. nigra, and P.

sylvestris). Some of the main species of shrubs are the common

box (Buxus sempervirens) or heath species (Erica spp.). Two species

of native barbels (Barbus haasi or B. meridionalis, depending on

river basin) inhabit the study area, as well as the native Squalius

laietanus, and the invasive exotic cyprinid (Phoxinus septimaniae x

P. dragarum) (Corral-Lou et al., 2019). Thirty sites were sampled

distributed among seven TRs: Vall d'Horta (H), Sanana (SA), Santa

Creu (SC), Rellinars (R), Talamanca (T), Castell�o (CA) and Mura

(MU). These TRs covered a wide hydrological gradient, with Flow

Permanence values (i.e., percentage of days with wet reaches in

each site, FP) ranging from 33.14% to 99.80% for the

513 monitored days (from July 2018 to December 2019) (see

Supporting information S2 for all FP values) (Pineda-Morante

et al., 2022). The samples were collected once per season during

2019: winter (January), spring (May), summer (July), and autumn

(November).

2.2 | Diatom and macroinvertebrate data

Diatoms were sampled by brushing the surface of three submerged

stones with a toothbrush. The samples were preserved in the

freezer using 70% ethanol. Then, organic matter was removed with

hydrogen peroxide at 100 �C, rinsed with distilled water and

prepared permanent slides with Naphrax ℗. Afterwards, diatoms

were identified to species level with a DIC Polyvar Zeiss microscope

with a built-in camera, counting a minimum of 500 diatom valves

per sample. Macroinvertebrates were collected along 100 m reaches

using a 250 μm mesh size hand net by kicking all the available

habitats. Before sampling, each studied reach was carefully

inspected to identify all the available habitats based on expert

judgement (including different items, such as substrate type, flow

conditions, and aquatic vegetation). The samples were preserved in

96% ethanol and stored them in the freezer until their sorting and

identification. Likewise, all macroinvertebrates were identified and

counted using a binocular stereoscope to the lowest possible

taxonomic resolution (usually genus). Once all diatoms and

macroinvertebrates were identified and counted, a logarithmic

transformation was applied (log x + 1) to abundances values of

each taxon.
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2.3 | Environmental and hydrological data

The abiotic variables were measured once per reach in each season.

Dissolved oxygen (DO mg/L), oxygen saturation (DO %), water

temperature (T �C), pH, conductivity (EC μS/cm), specific

conductivity (SPC μS/cm) and total dissolved solids (TDS mg/L) were

measured using a multiparameter probe (YSI Professional plus

Multiparameter Probe). A characterisation of the habitat

heterogeneity was also conducted by calculating the “Fluvial Habitat

Index” (IHF) (Pardo et al., 2002), which accounts for the

embeddedness in riffles and sedimentation in pools (B1), the

frequency of riffles (B2), the substrate composition (B3), the flow

velocity and depth regimes (B4), the percentage of shade in the

channel (B5), the presence of habitat heterogeneity elements

(e.g., leaf litter, branches and woods, or roots) (B6) and the aquatic

vegetation coverage (B7). Presence/absence of water was registered

from July 2018 to December 2019 using temperature data loggers

deployed at each sampling site (Pineda-Morante et al., 2022). This

information was used to calculate different hydrological metrics: the

total number of dry days or duration of drying events (hereafter

TotDur), the frequency of drying events or number of drying events

(hereafter TotNum) and the average length of each drying event

(hereafter TotLeng) (Arias-Real et al., 2021; Crabot et al., 2020;

Pineda-Morante et al., 2022). In addition, the flow permanence was

calculated as the percentage of the days that reaches were wet along

two different time windows: 50 days before each sampling campaign

(FP50), and 100 days before each sampling campaign (FP100). Two

different time windows were considered, since organisms with

different life cycles will be affected differently depending on when

and how long sites were dried.

A presence/absence of water dataset was utilized to calculate

spatiotemporal hydrological connectivity variables (hereafter STcon)

for each sampling site, and considering the two scenarios proposed

in Cunillera-Montcusí et al. (2023): a binary scenario

(i.e., connection between sites as 1 and no connection as 0) and a

weighted scenario (i.e., connection between sites weighted by the

Euclidean distance between them). In addition, two types of

network structures were considered for each of these two

scenarios: directed (i.e., with an upstream to downstream

directionality) and undirected (i.e., where all sites are connected

between each other). Four STcon values were finally obtained:

directed and binary, undirected binary, directed weighted and

undirected weighted (DirBin, UndBin, DirWei, and UndWei,

respectively). For binary scenarios, higher STcon values imply that a

site has been highly connected with all its potential neighbours

during the monitored time (i.e., high connectivity), whereas

weighted scenarios with higher values imply that a site has been

highly disconnected during the monitored time and it is located in

an isolated position from its neighbours (i.e., high dispersal

resistance). As distances between sampling sites for each stream

were small, and streams were relatively straight, Euclidean distances

could be used to weight both Binary and Undirected scenarios. See

more details about STcon in Cunillera-Montcusí et al. (2023).

2.4 | Beta diversity partitioning: LCBD and SCBD

Community uniqueness results from partitioning beta diversity indices

between sites (LCBD) and species (SCBD). LCBD calculates the

uniqueness of the community across several sites and indicates how

far each individual site is with respect to the mean centroid sample.

The sum of the LCBDs across all sites equals 1, being the highest

values of LCBD corresponding to communities with different species

composition (Legendre, 2014). Then, sites with significantly different

LCBD values were identified (p-value < 0.05 after Holm correction for

multiple comparisons; Borcard et al., 2011; Holm, 1979). In order to

identify sites with significant LCBD values, a Holm-corrected test was

used (Holm, 1979). To explore the temporal variation of selected sites

with high LCBD, LCBD values for each season were plotted.

Moreover, SCBD calculates the species contribution to beta diversity,

which represents the relative contribution of each taxa to beta

diversity. For this, a “rose plot” was plotted to visually explore the

different contributions of each taxa to beta diversity and

the relationship with occupancy and abundance. The “beta.div”
function (Legendre & De Cáceres, 2013) in the R package

“Adespatial” (Dray et al., 2022) was used to calculate LCBD and

SCBD, and the “ggplot” function in the ggplot2 v. 3.4.1

(Wickham, 2016) to plot the results of the analyses.

2.5 | Systematic planning tools: MSF

To identify a minimum set of sites that collectively achieve a coverage

target, the systematic planning tool Marxan was used (Ball

et al., 2009). Marxan relies on a simulated annealing optimization

algorithm to identify a minimum set of sites that meet user-defined

targets at a minimum cost. A representation target of 20% of the sites

where each species was found was set (i.e., occupancy of each

specie*0.2), keeping a minimum target of 1 for those taxa that were

present in less than five sites. Given the high rate of taxa turnover in

our dataset, with most taxa restricted to a few sites, high

representation targets could only be achieved for all taxa at the same

time by selecting almost all sites simultaneously. To address this

problem, a bootstrap analysis was conducted (Bruno et al., 2022), by

attempting to achieve the targets for a given proportion of all taxa

each time. For this, 1,000 random samples were selected containing

50% of the taxa from the total pool and identified the minimum set of

locations to cover the representation targets explained above. This

decision was based on the work of Bruno et al. (2022), who tested

three different thresholds (50%, 75%, 90%) and found that the results

were consistent across the different bootstrap thresholds used. Given

the lack of estimates of conservation costs across the study area, a

constant cost across all locations were used (e.g., Hermoso

et al., 2021) and no connectivity penalty measure was included,

similar to Bruno et al. (2022). With this configuration, Marxan was ran

100 times, using a million iterations each, and kept the solution with

the lowest objective function score across those runs as our best

solution, for each of the bootstrap selection of taxa. All best solutions
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were summarised by calculating the selection frequency of each

location across the 1,000 solutions, calling this variable Marxan

Selection Frequency (MSF). In this way, the irreplaceability of each

site at representing the taxa was measured, regardless of the

particular combination of taxa selected in each of the 1,000

bootstraps. As previously described above for LCBD, MSF values for

each season were plotted to explore changes in space and time.

Finally, in order to compare results obtained by LCBD and MSF

approaches, taxa richness per site was calculated using the “vegan”
package (Oksanen et al., 2022), and compared values among seasons

using a Kruskal-Wallis test. In case of differences between seasons, a

Mann–Whitney-Wilcoxon test was conducted.

2.6 | Environmental and hydrological models

Finally, all predictor variables were normalised (i.e., water chemistry,

hydrology, habitat, spatiotemporal connectivity) using the “scale”
function from R Base Package and tested their correlation between

them using the function “findCorrelation” from “caret” R package

(Kuhn, 2008). The Spearman correlation cut-off was set at 0.7 and then

calculated the mean absolute correlation of each variable with the rest

of the variables in the dataset, eliminating those with the highest mean

absolute correlation. For the diatom data, a total of 16 variables were

considered to test with LCBD and MSF. Previously, seven variables

were deleted (TotDur, TotNum, FP100, B6, EC, SPC and DO %) that

had a high Spearman correlation. For the macroinvertebrate dataset, six

of the 23 variables were eliminated because of their high Spearman

correlation (TotDur, TotNum, FP100, EC, SPC and DO %), resulting in a

total of 17 variables to test with LCBD andMSF.

In order to analyse the complementarity of LCBD and MSF, we

compared data obtained by the two approaches and with richness

using beta regression models for LCBD, and linear mixed-effect

models (LMM) for MSF. All models included streams and sites as

random effects, and season as fixed effect. For LMM, the “lme”
function in the package “nlme” was used (Pinheiro et al., 2022),

whereas for beta regression models, the “glmmTMB” function in the

glmmTMB v. 1.1.5 (Brooks et al., 2017) was employed. Finally, in

order to determine the environmental drivers behind selected sites by

LCBD and MSF, similar models were run between each approach and

the predictor variables. Two different coefficients of determination

were reported, denoted R2. Marginal R2 (R2m) describes the

proportion of variance of fixed factors and conditional R2 (R2c), that

takes into account fixed and random effects (i.e., the total model)

(Nakagawa & Schielzeth, 2013).

Rstudio 4.3.0 was used for all the analyses and Muff et al. (2022)

was followed to report the results in the language of evidence.

3 | RESULTS

A total of 55,654 diatoms belonging to 222 species and 144,846

macroinvertebrates belonging to 178 different taxa were collected

(diatom species and macroinvertebrate taxa can be found in

Supporting Information S3). Diatoms richness ranged between 14 and

65, with an average of 34. The Kruskal–Wallis test showed no

significant difference in richness among seasons (p = 0.141).

Macroinvertebrates richness ranged between 6 and 62, with an

average of 34. The Kruskal-Wallis test showed strong differences in

richness among seasons (p < 0.001). The strongest differences were

found between autumn and the rest of the seasons (see Mann–

Whitney–Wilcoxon test for further information in Supporting

Information S1).

According to the Holm-corrected LCBD values, four sites strongly

contributing to beta diversity which belonged to the same stream and

two different seasons for diatoms were found (H1W, p = 0.009;

H2W, p = 0.009; H3A, p = 0.037; H5A, p = 0.037). Four sites were

also found for macroinvertebrates, belonging to three different

streams and three different seasons (H5W, p = 0.039; MU2A,

p = 0.01; SC2SP, p = 0.01; SC3A, p = 0.03). A high spatiotemporal

variability in LCBD for both diatoms and macroinvertebrates was

found (Figure 1). For example, some ephemeral sites (e.g., R1 and R2)

were completely dry for most of the year and LCBD ranged from 0 to

0.011, whereas some perennial reaches (e.g., H1) maintained very

similar LCBD values throughout the seasons for macroinvertebrates

(Figure 1c,d). MSF also showed a very strong seasonal variation for

both diatoms and macroinvertebrates. For example, for diatoms, only

two sites were selected by MSF during summer (T3 and CA1)

(Figure 1b).

No strong relationship was found between LCBD and MSF

(diatoms: p = 0.641; R2m = 0.002; R2c = 0.125; macroinvertebrates:

p = 0.264; R2m = 0.012; R2c = 0.211). LCBD showed a negative

relationship with species richness, which was weak for diatoms

(p = 0.026; R2m = 0.077; R2c = 0.445) and very strong for

macroinvertebrates (p < 0.0001; R2m = 0.355; R2c = 0.411).

Contrarily to LCBD, MSF showed a strong positive relationship with

richness for both, diatoms (p < 0.0001; R2m = 0.298; R2c = 0.304)

and macroinvertebrates; (p < 0.0001; R2m = 0.443; R2c = 0.46)

(Figure 2).

SCBD values ranged from 0 to 0.024 for diatoms, and from

0.0001 to 0.035 for macroinvertebrates. SCBD showed an unimodal

relationship with species occupancy when presence/absence data

was used (Figure 3b–d), whereas it increased exponentially with

occupancy when using abundances (Figure 3a–c).

A great seasonal variability was found in the contribution of

each taxa to beta diversity (Figure 4). For diatoms, several species

showed high SCBD values in three seasons (e.g., Brachysira neoexilis,

B. neglectissima, Encyonopsis subminuta, Gomphonema

lateripunctatum, Gomphonema tergestinum, Amphora pediculus and

Achnanthidium pyrenaicum) whereas other species showed high

SCBD values for only one season (e.g., few Fragilaria spp. in winter,

Cocconeis placentula in spring or Navicula antonii in autumn). In the

case of macroinvertebrates there were seasonal variations in SCBD.

For example, Bidessus exclusively contributed to beta diversity in

spring, whereas Habroleptoides greatly contributed in winter.

However, some taxa (e.g., Dasyhelea or Cloeon) greatly contributed
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to beta diversity across seasons (Figure 4). SCBD did not seem to be

related to the rarity of the taxa, since some taxa that were

exclusively found in ephemeral streams (e.g., Tyrrhenoleuctra and

Mesophylax), showed very low SCBD values (0.003 and 0.001,

respectively).

According to beta regression models using diatoms, LCBD did not

show any relationship with the predictor variables, whereas MSF

showed a strong positive relationship with two variables: dissolved

oxygen (DO mg/L) (F = 7.61; p = 0.007) and temperature (F = 7.81;

p = 0.007); and a weak relationship with two spatiotemporal

connectivity metrics: connectivity (UndBin) (F = 3.021; p = 0.087)

and dispersal resistance (UndWei) (F = 3.559; p = 0.064) (Figure 5)

(for more information about the rest of the variables see Supporting

Information S1). For macroinvertebrates, there was a strong

relationship between LCBD and three habitat heterogeneity variables:

embeddedness in riffles and sedimentation in pools (B1) (Z = 2.98;

p = 0.003), frequency of riffles (B2) (Z = �2.62; p = 0.008) and the

substrate composition (B3) (Z = 3.08; p = 0.002). Other two variables

related to spatiotemporal connectivity showed a moderate

relationship with LCBD: directed weighted scenario (DirWei:

Z = 2.27; p = 0.023) and undirected binary scenario (UndBin:

Z = �2.52; p = 0.012). Finally, two habitat heterogeneity variables

showed a weak relationship with LCBD: flow velocity and depth

regimes (B4) (Z = �1.86; p = 0.062) and aquatic vegetation cover

(B7) (Z = �1.65; p = 0.098). For MSF using macroinvertebrates

models only showed a strong relationship with aquatic vegetation

cover (B7) (F = 10.37; p = 0.02) (for more information about the rest

of the variables see Supporting Information S1).

The relationship of LCBD with the variables selected by the beta

regression models experienced seasonal variations (Figure 6). For

example, DirWei (i.e., the dispersal resistance, or spatiotemporal

isolation, between reaches following a downstream direction) was

positively related with LCBD in all seasons, whereas UndBin (i.e., the

connectivity between each pair of reaches without any given

direction) was negatively correlated with LCBD in all seasons except

for winter (Figure 6e).

4 | DISCUSSION

In spite of covering a small study area with similar climatic, geological,

and habitat characteristics, selected sites for conservation using LCBD

F IGURE 1 Bubble plots showing Local Contribution to Beta Diversity (LCBD) values and Marxan's Selection Frequency (MSF) for the four
seasons and across sites. (a,b) Diatoms and (c,d) macroinvertebrates values. Bubble plot size represents LCBD and MSF values. The order of the
reaches is in increasing order of dispersal resistance (UndWei) values.
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and MSF varied widely in space and time, which agrees with our first

hypothesis. Given our results, we advise conservation plans to

properly capture the spatiotemporal hydrological variability of TRs

and be able to accommodate the changing conditions. As we have

hypothesised, TRs are highly dynamic systems that create a patchy

landscape in which flowing reaches can co-occur with disconnected

pools and dry riverbeds within a single network. This favours the co-

existence of different communities (e.g., aquatic and terrestrial)

because of multiple factors, such as habitat heterogeneity or the

existence of spatially isolated sites that serve as a refugia for weak

competitors (Bonada et al., 2020; Larned et al., 2010). Moreover, this

landscape drastically changes over time. For example, in late summer,

F IGURE 2 Relationship between Local Contribution to Beta Diversity (LCBD), Marxan's Selection Frequency (MSF) and taxa richness for
diatoms and macroinvertebrates.

F IGURE 3 Relationship between occupancy and abundance or presence/absence data for diatoms (a,b) and macroinvertebrates (c,d).
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a dry fragmented stream network can be rapidly transformed

into a fully connected network after heavy precipitation events

(Pineda-Morante et al., 2022). Taking this into account, planning

conservation on the basis of snap-shot aquatic biodiversity surveys

would lead to strongly biased and misguided decisions that could

hamper conservation efforts.

MSF and LCBD showed a strong spatiotemporal variability, but

they were weakly related. In agreement with our second

F IGURE 4 Rose plot of the most contributing taxa to beta diversity (SCBD) across seasons for diatoms and macroinvertebrates. Diatom
species codes can be found in Supporting Information S3.

F IGURE 5 Relationships between predictor variables and Marxan's selection frequency (MSF) for diatoms with p-values < 0.1 in each season.
DO mg/L refers to dissolved oxygen, temperature to the temperature on water, UndBin to the connectivity between each pair of reaches without
any given direction, and UndWei to the dispersal resistance (or spatiotemporal isolation) between reaches not following a downstream direction.

8 of 15 FERNÁNDEZ-CALERO ET AL.

 10990755, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aqc.4139 by Irta T

orre M
arim

on, W
iley O

nline L
ibrary on [15/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



hypothesis, MSF usually selects a combination of sites with high

local richness and very rare taxa (Epele et al., 2021). In our study,

under some circumstances, MSF was able to adequately represent

all taxa by selecting a few sites (e.g., only two sites for diatoms in

summer). On the contrary, LCBD selected the communities with a

higher relative weight at the level of community differentiation but

not necessarily the communities with rare or endemic species.

Thus, this approach does not seem adequate to design conservation

strategies in rivers when these rare or endemic species occur and

have a high conservation value, such as in TRs (Bogan, 2017;

Fernández-Calero et al., 2022; Stubbington et al., 2017). In

these cases, MSF with its principle of complementarity and its

flexibility in the application of specific targets, would be a more

reliable tool. However, LCBD selected communities with higher

differentiation and low richness that were not necessarily selected

by MSF (e.g., site R4 in autumn or H5 in winter (Figure 1)). This

highlights the conservation value of TRs and specially of those with

low richness as a result of low flow permanence (Datry

et al., 2014).

According to previous studies (Heino & Grönroos, 2017; Siqueira

et al., 2009) taxa with high abundances and occupancy across sites,

which are often the least threatened taxa, present a greater

contribution to beta diversity. Concordantly, we found a very strong

relationship between species occupancy and abundance with SCBD

for diatoms and macroinvertebrates. This suggests that SCBD alone is

not a suitable metric to assess the conservation value of a given taxa,

since it is strongly driven by locally abundant and regionally common

species, rather than rare or endemic species with high conservation

value (Rodríguez-Lozano et al., 2023). For example, the genus

Tyrrhenoleuctra, a specialist taxon of ephemeral rivers, whose nymphal

presence only occurs in winter and early spring, did not strongly

contribute to SCBD in our study. However, this is a rare and

vulnerable taxa with restricted geographical distribution (Fernández-

Calero et al., 2022; Fochetti et al., 2009) that should be considered in

conservation plans and probably requires specific conservation

actions.

Despite the use of SCBD is not recommended for conservation,

we found different diatom and macroinvertebrate taxa strongly

contributing to beta diversity depending on the season. In the case of

diatoms, species characteristic of oligotrophic calcareous rivers

contributed the most to beta diversity (e.g., Brachysira neoexilis,

Gomphonema lateripunctatum, G. tergestinum and Encyonema

subminuta), as well as generalist species (e.g., Achnanthidium

pyrenaicum and A. pediculus). This aligns with previous studies

showing that commonly occurring diatom taxa greatly contribute to

beta diversity (Szab�o et al., 2019; Vilmi et al., 2017). For

F IGURE 6 Relationships between predictor variables and Local Contribution to Beta Diversity (LCBD) or Marxan's Selection Frequency
(MSF) values for macroinvertebrates with p-values < 0.05 in each season. “B1” refers to embeddedness in riffles and sedimentation in pools, “B2”
to the frequency of riffles, “B3” to the substrate composition, “DirWei” to the dispersal resistance (or spatiotemporal isolation) between reaches
following a downstream direction, “UndBin” to the connectivity between each pair of reaches without any given direction, and “B7” to the
aquatic vegetation cover.
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macroinvertebrates, the differential seasonal contribution of taxa

might be explained by changes in habitat variability and flow

permanence (Bonada et al., 2007), which influences habitat

preference and phenology (Porst et al., 2012; Woods et al., 2022). For

example, in agreement with previous studies (Bogan et al., 2017;

Bonada et al., 2007), Ephemeroptera, Plecoptera, and Trichoptera

(EPT) were more abundant in winter and autumn, during flowing

conditions and mild temperatures, whereas Odonata, Coleoptera, and

Hemiptera (OCH) dominated in spring and summer, when many

stream reaches might have disconnected pools and temperatures are

high. Thus, riffle-adapted taxa, such as Simulium and Habroleptoides

(Horne et al., 1992), showed high SCBD values in winter and autumn,

whereas in spring and summer lentic-adapted taxa, such as Bidessus,

Stictonectes, Gerris, or Sympetrum (Buffagni, 2021; Letsch et al., 2016),

showed the highest SCBD values. However, there were many

generalist taxa that contributed significantly to beta diversity

throughout most of the year (e.g., Cloeon and Dasyhelea).

Concerning our third hypothesis, local conditions largely

determined the conservation importance of our study sites.

Physicochemical and habitat variables were the most important

drivers of LCBD and MSF for diatoms and macroinvertebrates,

respectively. We found that dissolved oxygen and temperature drove

diatom MSF, in line with previous works showing that local

physicochemical conditions shaped diatom communities (Soininen &

Teittinen, 2019). Diatoms also responded to environmental

heterogeneity, but this might be directly related to the species-area

relationship (SARs) (i.e., larger samples, more richness) (Soininen &

Teittinen, 2019). For macroinvertebrates, embeddedness in riffles and

sedimentation in pools (B1), along with substrate composition (B3),

and aquatic vegetation cover (B7), determined LCBD across seasons,

suggesting that, in general, increasing habitat heterogeneity might

promote community turnover through a niche partitioning. For

example, rock characteristics can determine caddisfly oviposition

patterns and influence population dynamics (Reich et al., 2011).

Overall, our findings illustrate the importance of preserving local

habitat heterogeneity to support diverse macroinvertebrate

communities.

Our results agree with that more spatiotemporally isolated sites

in TRs showed a stronger contribution to LCBD (Crabot et al., 2020;

Ruhí et al., 2017). However, there were important temporal

variations in the relationship between LCBD and hydrological

connectivity. When the network was fully connected in winter (after

the rewetting), LCBD values linearly increased with spatiotemporal

connectivity, most likely because there are fewer dispersal

restrictions and each species occupies its preferential niche (Fletcher

et al., 2016; Leibold & Chase, 2017; Thompson et al., 2017; Warfe

et al., 2012). In the remaining seasons, the communities with highest

LCBD values were located in the most spatiotemporally isolated

sites, suggesting that isolation promotes beta diversity (e.g., by

allowing rare species with low competitive advantage to persist),

which has already been shown for high mountain streams (Finn

et al., 2011). Hydrological connectivity also played a role in the

selection of sites by MSF, with spatially isolated sites being often

selected to represent rare taxa. Overall, our results suggest that

conservation plans should adequately capture the natural

hydrological variability of drying river networks, because the

networks can also have temporary reaches with high conservation

value (Hamdhani et al., 2020; Hermoso et al., 2013; Naia et al., 2021;

Vander Vorste et al., 2020).

TRs are one of the most widespread and vulnerable river systems

on the planet (Chiu et al., 2017; Datry et al., 2023; Messager

et al., 2021), but host unique freshwater biodiversity adapted to these

ecosystems (e.g., Mesophylax, Tyrrhenoleuctra) (Bonada et al., 2020;

Magoulick & Kobza, 2003; Vander Vorste et al., 2020; Yu et al., 2022).

In addition, TRs also support semi aquatic and terrestrial taxa

(i.e., invertebrates and vertebrates) that use dry channels and riparian

habitats as new habitats and migration corridors (Sánchez-Montoya

et al., 2017). These singular river ecosystems should have specific

conservation strategies to ensure their biodiversity and functionality.

However, specific protection plans including TRs are still lacking

(Datry et al., 2023). For example, in Europe, even though the Annex I

of the Habitats Directive (Council Directive 92/43/EEC, 1992)

describes habitat types that refer to TRs (i.e., Intermittently flowing

Mediterranean rivers of the Paspalo-Agrostidion, and Riparian

formations on intermittent Mediterranean watercourses with

Rhododendron ponticum, Salix, and other species), this has resulted in

limited conservation and policy actions related to the protection of

these ecosystems (Datry et al., 2023; Fritz et al., 2017; Magand

et al., 2020). In the United States, many temporary waterbodies are

protected under a range of policy instruments at the local, State, and

Federal levels. However, protections for TRs at the Federal level have

been increasingly threatened over the past decades, owing to

Supreme Court rulings (Sulliván & Gardner, 2023). A recent Supreme

Court decision (Sackett v. US Environmental Protection Agency) has

ruled that for a “wetland” (including streams and rivers) to receive

protection under the Clean Water Act of 1972, it must have a

continuous surface connection with a larger body of water (i.e., an

ocean, a lake, or a larger perennial river). This decision threatens

protection to TRs, which strongly dominate the subarid and arid

regions of the U.S. Southwest (Levick et al., 2008). Moreover, as many

rivers across the U.S. Southwest continues to lose flow because of

climate change and overallocation of freshwater resources (Ruhí

et al., 2016), often shifting from perennial to intermittent flow

regimes, using physical but not biological connectivity as a condition

for stream protection may enable further degradation in the near

future.

In addition, many rivers around the world are expected to

become temporary and unpredictable during the next decades

because of climate change (Döll & Schmied, 2012). Thus,

conservation plans that incorporate the spatiotemporal variability of

TRs, will become increasingly needed to effectively protect

freshwater biodiversity. Therefore, based on our results, we suggest

a set of recommendations to guide future conservation plans for

TRs that help to ensure their biodiversity and functionality. Firstly,

we strongly recommend regular assessments across seasons or, at

least, during the dry season (including disconnected pools), the
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rewetting period, and the fully connected period to have a full

characterization of biodiversity. Secondly, we recommend the use of

beta diversity components such as LCBD and conservation planning

methods (MSF) as complementary approaches to determine and

prioritize sites to be conserved. LCBD is able to detect unique

species composition even in sites with low richness as a result of

low flow permanence (Datry et al., 2014), whereas MSF could be

used as a tool to design specific criteria, for example, to include rare

or singular species. Thirdly, focusing on a local perspective, we

encourage the preservation of local habitat heterogeneity such as

the substrate composition or instream aquatic vegetation. Fourthly,

in a regional perspective, we encourage the conservation of

spatiotemporal isolated communities with low species richness

because these sites usually host unique communities with high

LCBD values. Fifthly, we argue that natural spatiotemporal

connectivity should be enforced and be case specific (Cid

et al., 2022). For example, in historically isolated populations and

communities such as the ones in our study, anthropogenic water

discharges that could increase hydrological connectivity but

decrease biodiversity of the TRs should be avoided.

Although our study provides valuable insights about the

spatiotemporal dynamics of biodiversity patterns in TRs and how it

can influence conservation decisions, it also has limitations that

should be consider if our approach is applied to other areas. Firstly,

our study area covers a small spatial scale with very homogeneous

environmental conditions, which could potentially result in

homogeneous community dynamics. However, we showed that even

under similar environmental conditions community dynamics differ

because of differences in spatiotemporal hydrological dynamics.

Secondly, the temporal duration of the study was only one year, and

the patterns observed may not reflect long-term trends. Although the

year of the study was a normal hydrological year in the area, in a drier

year, communities can behave completely different (Cid et al., 2017).

This highlights the need to incorporate data coming from multiple

years in conservation planning studies, especially in areas with high

interannual variability, such the Mediterranean region (Bonada

et al., 2020; Cid et al., 2017). Thirdly, our study only considers

diatoms and macroinvertebrates, which may not represent the full

complexity of the ecosystem. Data on other aquatic or even terrestrial

organisms (e.g., fish, amphibians) would be recommended if the

approach needs to be applied to other areas. Future research should

address these limitations when applying our approach to other TRs

(and even perennial) in order to increase the performance of

conservation strategies.

Finally, conservation plans need to be flexible and adapted to

each hydrological scenario. For example, in the wet season the

connectivity of the river network and microhabitat heterogeneity

(riffles and pools) should be maintained at the reach scale.

However, during the dry season, maintaining disconnected pools is

key to sustaining refuges for aquatic biodiversity. All these

recommendations stand as broad guidelines that should be

specifically adapted to the particular characteristics of each TR but

keeping in mind the relevance of these ecosystems at the global

scale (Messager et al., 2021), especially considering future global

change scenarios.
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