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Abstract

This study demonstrates a new approach to process hyperspectral images

where both the contextual spatial information as well as the spectral

information are used to predict sample properties. The deep contextual spatial

information is extracted using the deep feature extraction from pretrained

resnet-18 deep learning architecture, while the spectral information was

readily available as the average pixel values. To fuse the information in a

complementary way, a multiblock modeling approach called sequential

orthogonalized partial least squares was used. The sequential model guaran-

tees that the information learned is complementary from spatial and spectral

domains. The potential of the approach is demonstrated to predict several

physical and chemical properties in pork bellies.
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1 | INTRODUCTION

Hyperspectral imaging (HSI) is a novel spectroscopy technique that allows the exploration of spatially resolved spectral
properties of materials in a nondestructive and noncontact manner.1 The technique requires minimal sample
preparation and can access surface properties of materials.2 In some cases, information can be accessed up to a certain
depth from the top layer.3,4 For example, in the case of fresh fruit, the technique allows capturing information below
the fruit skin.5 HSI can be performed in various modalities depending on the light source and camera optics, such as
fluorescence,6 ultraviolet,7 visible and near-infrared (VNIR),3 shortwave infrared,8 and Raman.9 The application of HSI
can be found in different domains of sciences, ranging from field applications for agricultural purposes to high-end
pharmaceutical manufacturing.10

HSI in the VNIR range is the most commonly used spectral range for food and bio-process analysis.1 One of the
main reasons for this is that illumination and optical camera systems are readily available for the VNIR domain and
can be easily integrated to run experiments. In some cases, fully standalone systems for HSI are also available.11 For the
application of interest in this study, that is, meat, VNIR HSI has been widely applied for the analysis of various types of
meat such as chicken,12 beef,13 pork,14 as well as seafood such as shrimps15 and salmons.16

Received: 5 February 2024 Revised: 1 April 2024 Accepted: 3 April 2024

DOI: 10.1002/cem.3552

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Authors. Journal of Chemometrics published by John Wiley & Sons Ltd.

Journal of Chemometrics. 2024;e3552. wileyonlinelibrary.com/journal/cem 1 of 9

https://doi.org/10.1002/cem.3552

https://orcid.org/0000-0001-8895-798X
mailto:puneet.mishra@wur.nl
https://doi.org/10.1002/cem.3552
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cem
https://doi.org/10.1002/cem.3552
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcem.3552&domain=pdf&date_stamp=2024-04-18


One of the main steps in using HSI in the spectral range of VNIR is that, for predictive modeling, calibrations need
to be developed.17,18 Calibrations are nothing but predictive models based on reference samples covering a wide varia-
tion in physicochemical properties of interest.19 In the case of VNIR spectral modeling, some special chemometric
methods such as partial least squares (PLS) are considered as the gold standard.18 PLS allows handling the high
multicollinearity in the VNIR data by projecting the data in the directions of maximum covariance.20 PLS also performs
data compression simultaneously, allowing the later development of multilinear models efficiently. For predictive
modeling purposes, it is a common practice to extract the mean spectra of objects and then train the models with some
ground truth data.21

In the domain of close-range HSI, several approaches have emerged to analyze the HSI data; however, most of them
are limited to only using spectral information.3,21 In fact, it can be observed that HSI in the close range is minimally
treated as imaging but more as a point spectrometer capable of measuring spectra from different locations. The rich
contextual spatial information available in the imaging domain of HSI is minimally used,17 and also, minimal attention
is paid to it during modeling. In some recent studies, the authors have started focusing on using spatial information for
improved model building22,23 as well as the validation of models in terms of spatial homogeneity/heterogeneity.24 In
recent studies,22,23 the use of spatial information was supported by manually extracting spatial features such as grey
level co-occurrence matrices from the pseudo-color images available from spectral images. Such studies have already
shown that a combination of spatial and spectral information leads to improved model performance. However, such
manual extraction approaches are limited by the number of filters that can be manually tuned and applied. On the
other hand, deep learning (DL) has emerged as a potential tool to model imaging data.25 The main benefit of DL models
for image processing is that they allow automatic tuning and extraction of relevant features with multilayer neural
networks depending on convolution operations. DL models for computer vision applications are trained on millions of
images and carry the tendency to capture features applicable to generic image processing. Usually, for new applications,
the models need not be trained from scratch but only fine-tuned to match the application.26 This concept of fine-tuning
is called transfer learning and has been described in a recent chemometric article.27 Apart from transfer learning, the
deep pretrained models can also be used to perform sole feature extraction.28,29 This can be performed by removing
the output layer of the deep models and using the processed information until the second last layer as a feature vector,
as proposed in this work and described later in the method section.

Similar to VNIR spectral data, the features extracted by DL models carry high multicollinearity as there are no
specific constraints in the deep models to keep the features orthogonal. High multicollinearity indicates that PLS
approaches20 can still benefit in further polishing the deep features before they are combined with spectral information
to build the final models. Also, the scale of deep features is totally different compared with the scale of the spectral data.
In that regard, an optimal approach to fuse the deep features with the spectral information is to use chemometric
multiblock approaches30 such as sequential orthogonalized PLS regression.31 In SO-PLS, only complementary
information from data coming from different sources is extracted. In the presented case, this means only unique
information from the spatial and spectral domain will be learned by the model for data compression and later for model
development. This also means that the model will only accept information fusion if there is truly complementary
information in the spatial and spectral domain. Some recent applications of SO-PLS for fusing information for
hyperspectral analysis include fusion of data from hyperspectral images of different spectral cameras.32,33

The objective of this study is to present the potential of a new HSI processing strategy that combines the concept of
spatial and spectral information fusion with deep feature extraction. The study aims to use the freely available deep
network resnet-18 for feature extraction from the spatial domain of HSI and then combine that with the spectral
information in a multiblock framework of sequential modeling. The application of the methodology is demonstrated on
a real case of VNIR HSI-based pork belly analysis to predict several physicochemical parameters.

2 | MATERIALS AND METHOD

2.1 | Sample, HSI, and reference analysis

A total of 182 bellies from the left half of carcasses were randomly selected 24 h postmortem from various commercial
slaughterhouses, ensuring a wide variability in genotypes and sexes. The bellies were obtained using anatomical points
of reference before being deboned. Subsequently, the bellies were deboned, weighed, and the belly weight proportional
to the carcass weight was calculated as a percentage (referred to as belly proportion). In this study, three distinct

2 of 9 MISHRA ET AL.

 1099128x, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3552 by Irta T
orre M

arim
on, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



chemical parameters (fats, proteins, and iodine value) and two physical parameters (flop angle and finger pressure test)
were measured and utilized for predictive modeling.

All samples were initially imaged with the HSI system, which consisted of a spectrograph, a camera, a conveying
platform, and a computer supported with data acquisition software (Spectronon, Resonon Inc., Bozeman, MT, USA).
The conveying platform was positioned 50 cm away from the camera lens and was driven by a stepping motor at a
speed of 0.03 m/s. Four 50 W tungsten-halogen lamps were strategically placed to illuminate the camera's field of view.
In this push-broom HSI system, spectral images were collected line by line in reflectance mode within the wavelength
range of 386–1015 nm, with 300 wavebands at 2 nm intervals in the spectral domain. The HSI system underwent
calibration before each imaging session: A dark image (0 % reflectance) was obtained by covering the camera lens with
its opaque cap in the absence of light, and a white image was captured using an 8 � 20 cm Teflon piece (99.9%
reflectance). To extract spectral information for each belly, the image underwent segmentation, and all pixels
corresponding to fat were averaged to generate a mean spectral profile for each belly.

For protein content, the belly (without skin and bones) was homogeneously minced with a cutter, vacuum-packed,
and frozen at �20�C for further analysis. Proteins (Kjeldahl nitrogen) were then analyzed from the minced belly
following official methods.34 Lipids from the minced bellies were extracted using chloroform/methanol (1:2, v/v) and
quantified according to the method described in Bligh and Dyer.35 After lipid extractions, fatty acid (FA) compositions
of subcutaneous fat and minced belly samples were determined by acidic trans-esterification in the presence of sodium
metal (0.1 N) and sulfuric acid (5% sulfuric acid in methanol).36 The FA methyl esters (FAME) were analyzed by gas
chromatography, using a Hewlett–Packard HP-4890 Series II gas chromatograph equipped with a split/splitless injector
and a flame ionization detector (FID). Finally, individual FAME were identified by comparing their retention times
with those of reference standard mixtures (Sigma Chemical Co., St. Louis, MO, USA). The iodine value (IV) of belly
samples was determined according to the modified AOCS equation obtained by Fiego et al,37 by including all the
unsaturated FAs detected by gas chromatography.

As a physical characteristic, belly firmness was determined using the bar suspension method.38 This involved
employing a horizontal stainless-steel bar with a diameter of 20 mm, where the bellies were suspended skin side up
and down on their central short axis. This arrangement allowed both the caudal and cranial ends to freely fall. The
flop distance, which is the distance between the dorsal extremities, was measured, and the upper angle of the isos-
celes triangle formed was calculated using this flop distance and the length of the belly (referred to as the flop
angle). After removing the skin 48 h postmortem, the fat firmness of the bellies was also measured by finger
pressure (referred to as finger pressure) according to a predetermined scale as described by Soladoye et al.39:
"(1) firm fat, no finger mark, no floppy; (2) firm fat, no finger mark, partly floppy; (3) soft fat, finger mark remains,
floppy; (4) soft fat, finger mark remains, very floppy; (5) soft fat, finger mark remains, very floppy, oily”. The finger
pressure was assessed by two trained evaluators, and the average of the scores was used, with lower scores
indicating greater firmness.

2.2 | Hyperspectral image analysis

The images were measured with blue background; hence, segmentation of the images was performed using a partial
least squares discriminant analysis (PLSDA) model, distinguishing between the fat and nonfat parts in the imaged
scene. The model was constructed using manually selected spectra from the image and subsequently optimized through
a fivefold cross-validation analysis. This model was then applied to all the images to segment all the images and to
extract mean spectra for all the belly samples. Using mean spectra, samples were partitioned into calibration and test
set using the Kennard-Stone40 algorithm. The same partition was used for modeling and calibration for all the response
variables. Spectral data were preprocessed with variable sorting for normalization to eliminate physical effects from
spectra.41

In this study, the resnet-1842 model trained on over a million images was used as a pretrained network for deep
spatial feature extraction. Deep models were used for feature extraction task by removing the final layer of the network
and using the output of the second last layer of the network as the input to another model. In the presented case, the
output of the second last layer carrying deep features was combined with the spectral information in the multiblock
framework. In the case of resnet-18, the input spatial size is 224 � 224; hence, all the pseudo color images were
reshaped to 224�224, before input to the network. The pseudo color images were constructed using bands 750, 670,
and 500 as red, green, and blue. The extracted spatial features were 1-D vector of size 1 � 512; hence, for every image,
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the deep network provided 512 features. The spatial data were also partitioned using the same partition. The spectra
and spatial information were fused with the multiblock method called sequential orthgonalized PLS as explained in
following section.

2.3 | Sequential PLS algorithm for information fusion

In following, a description of the sequential data fusion algorithm is provided, presenting the key mathematical steps in
the algorithm. All matrices are denoted with bold uppercase typeface such as X. All vectors are denoted with bold
lowercase typeface such as y. All scalars are denoted with italic typeface such as a. Define y ðn�1Þ as the response
vector, ½Xspatial,XSpectral� as a multiblock multivariate input where first block is the deep spatial information and second
block are the spectral information. The spatial information is placed earlier than spectral because such information is
easy to access with just RGB cameras while the spectral information is only available with spectrometers. Let A be the
desired number of components to be extracted. Both the predictor and the response are assumed to be mean-centered.
Note that in the following algorithm, the user needs to define the order of the component extraction, for example, out
of A number of component, how many to be extracted from each block. For example, when the defined order involves
selecting components first from the spatial data and later from the spectral data, the algorithm allows developing
sequential model. In the cross-validation analysis (fivefold), different components extraction orders are explored to find
the optimal components from each data block. To keep the algorithm to converge, the max number of components for
each block was kept maximum to 20.

Algorithm for sequential partial least squares modeling

f ora¼ 1 :A - loop overAcomponents to be extracted according to the defined component extraction order

woa ¼Xoa
tY - loading weights extracted from the data block as defined in component extraction order

ta ¼ Xoawoa

kXoawoak
- estimate normalized score vector from the data block as defined in component extraction order

qoa ¼ ytta - y loading0s
y( y� taqt

a - y deflation

f or i¼ 1 : 2 - loop over spatial and spectral blocks to extract spatial and spectral specific loading0s
pia ¼Xt

iata - Block specific X loading0s
Xia (Xia � tapt

ia - Block specific deflation using extracted score

end - accumulate loading weights ðWÞ; scores ðTÞand loading0s ðPÞin matrices ðnot shownÞ
end - end of component loop

R¼WðPtWÞ�1 - projections for score prediction�
B¼ cumsumðRQtÞ - regression coefficients

B0 ¼Y�XB - mean compensation

*Calculation of projection for score predictions (R) assumes spatial and spectral loading's and loading weights stacked
with matrices of zeros for blocks not used for components extraction.

All model performances were evaluated using coefficient of determination, root mean squared error of prediction
(RMSEP), and ratio of standard deviation of test set to the RMSEP. All analyses were carried out in MATLAB 2021b
(Natick, MA, USA).

3 | RESULTS

The prediction results for iodine value, fat, and protein content are shown in Figures 1–3, respectively. The spatial
information was able to predict all three chemical parameters with a good coefficient of determination (r2 > 0.55). For
low-cost applications, this indicates that a relatively well-performing imaging system can be developed with RGB cam-
eras and DL. The model based on spectral information, carrying rich chemical band overtones information, predicted
all the chemical properties with a higher coefficient of determination and lower prediction errors than the spatial
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information. The fusion of spatial and spectral information in the framework of SO-PLS found optimal models using
only the information from the spectral domain. This is only possible if the information in the spatial domain related to
chemical properties is already captured by the spectral information, as the SO-PLS model only models complementary
information. For spatial information modeling, the optimal number of latent variables was almost three times less than
the latent variables for spectral information. Overall, for chemical property prediction, the highest coefficient of

FIGURE 1 Iodine value prediction with (A) spatial information, (B) spectral information, and (C) sequential fusion model.

FIGURE 2 Fat content prediction with (A) spatial information, (B) spectral information, and (C) sequential fusion model.

FIGURE 3 Protein content prediction with (A) spatial information, (B) spectral information, and (C) sequential fusion model.
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determination was obtained for fat content, followed by protein and then iodine value. For fat content and RPD of 5.46
was achieved with spectral information indicating that the model can be used for any application.43 For protein content
and iodine value, an RPD of 2.41 and 1.96 indicates that the model can only be used for rough screening purposes.43

For sole spatial information, the RPD values were only relevant for fat content, while for protein and iodine, the RPD
values were low to not recommended model for routine use.43

For predicting physical parameters such as angle flop (Figure 4 and finger press score (Figure 5), spatial information
either performed better than the spectral information in terms of lower prediction errors or showed similar
performance. However, the fusion of spatial and spectral information performed better than both the individual spatial
and spectral information-based models. The fusion modeling for predicting angle flop learned eight latent variables
from spatial information and one latent variable from the spectral domain. The RMSEP with fusion was 13.4�, which
was lower than the individual models based on spatial and spectral information. For predicting finger press score as
well, the fusion model was obtained with 16 latent variables from spatial and 2 latent variables from the spectral
domain, leading to the lowest RMSEP of 0.27. As noted in this study, the fusion of spatial and spectral information
mainly benefited the physical characteristics more than the chemical properties. For angle flop, the RPD value for sole
spectral information indicated very poor model,43 while for sole spatial information, the model fall in poor category,43

the higher RPD for fusion model of spatial and spectral information indicated a fair model which can be deployed for
screening purposes.43 For finger press scoring, the RPD for sole spatial and spectral information indicated a very poor
model not useful in practise, while the fusion model with higher RPD indicates that model can be used in rough
screening applications.43

FIGURE 5 Finger press score prediction with (A) spatial information, (B) spectral information, and (C) sequential fusion model.

FIGURE 4 Angle flop prediction with (A) spatial information, (B) spectral information, and (C) sequential fusion model.
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4 | DISCUSSION AND CONCLUSIONS

The study presented a novel approach to using both contextual spatial and spectral information for predictive modeling
based on HSI. The deep features extracted by the ResNet-18 pretrained model were able to predict different physico-
chemical properties. For chemical properties, the model based on spatial features performed poorer than the model
based on spectral features in terms of RMSEP and RPD. For physical properties, the model based on spatial features
performed better than spectral features. The fusion approach showed that it improved the model performance for
predicting physical parameters, indicating that spatial and spectral information carry complementary information
for predicting physical properties.

In some earlier studies, NIR spectroscopy has already been used for predicting several chemical properties such as
iodine and FA compositions.44,45 Earlier studies commonly used a spectral range of up to 2500 nm as clear peaks related
to fat are present in such a range. This study utilized the spectral range only up to 1000 nm, which is mainly composed
of a mixture of several bonds third overtones. The main reason for using such a range is the low cost of the spectral
sensor compared with a spectral sensor operating up to the 2500 nm spectral range. RGB color imaging has also been
used in the analysis of pork quality. For example,46 used RGB imaging to detect PSE (pale, soft, exudative) defects in
pork. Such analysis used the color lightness as an indicator of meat quality. In another study, RGB imaging has also
been used for predicting intramuscular fat.47 In this study, the deep features extracted with pseudo RGB images
were able to explain the chemical properties as well but not as well as the spectral features. The RGB data were
pseudo-generated from HSI data. A step to improve the results of RGB imaging could be to use a separate
high-resolution RGB camera which can capture detailed features. The hyperspectral cameras currently available on the
market usually have low spatial resolution.

The typical approach to hyperspectral image processing is either pixel-wise analysis using chemometric models21

or based on image analysis using DL approaches.17 Pixel-wise predictions are mainly performed when there is
spatial heterogeneity and also interest in exploring the spatial differences in properties. In the presented results,
we did not perform pixel-wise predictions to generate chemical maps. This is mainly because we were already
extracting and imaging only the fat part of the carcass and were interested in the average value of predicted
properties. If needed, for pixel-wise chemical map generation, instead of mean spectra, the user can simply use pixel
spectra and generate chemical maps as well; there are no restrictions on that. To enhance the extraction of spatial
information from the local pixel neighborhood, the user can feed the local region to the DL model for local spatial
feature extraction.

The developed approach can be applied to every application of HSI where predictive models (classification/
regression) need to be developed at the object level. The approach of feature extraction with DL is straightforward and
does not require any training for the deep model. In fact, as DL models advance in the area of computer vision, it is
expected that the feature extraction will become more refined as well. In some recent studies, older concepts such
as grey level co-occurrence matrices22,23 and wavelet transformation48 were used for manual hyperspectral feature
extraction; however, pretrained DL models (available open source) allow an automatic approach to extract deep
multiscale features, thus also saving time and extra manual analysis.

In the current study, while observing the pseudo-RGB images with the naked eye (results not presented), it was
difficult to see something visually different in RGB images which can be directly related to the explanation of the
chemical and physical properties. It was assumed that with multiscale feature extraction using DL, minute details that
are difficult to detect visually by the naked eye can be captured. In future research, the development of methods to
explain the deep models is needed. Such model explanation will allow pinpointing the exact spatial location/features
which carry relevant differences in samples.
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