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Abstract

Background: Cucumis melo (melon) belongs to the Cucurbitaceae family, whose economic importance among
horticulture crops is second only to Solanaceae. Melon has a high intra-specific genetic variation, morphologic
diversity and a small genome size (454 Mb), which make it suitable for a great variety of molecular and genetic
studies. A number of genetic and genomic resources have already been developed, such as several genetic maps,
BAC genomic libraries, a BAC-based physical map and EST collections. Sequence information would be invaluable
to complete the picture of the melon genomic landscape, furthering our understanding of this species’ evolution
from its relatives and providing an important genetic tool. However, to this day there is little sequence data
available, only a few melon genes and genomic regions are deposited in public databases. The development of
massively parallel sequencing methods allows envisaging new strategies to obtain long fragments of genomic
sequence at higher speed and lower cost than previous Sanger-based methods.

Results: In order to gain insight into the structure of a significant portion of the melon genome we set out to
perform massive sequencing of pools of BAC clones. For this, a set of 57 BAC clones from a double haploid line
was sequenced in two pools with the 454 system using both shotgun and paired-end approaches. The final
assembly consists of an estimated 95% of the actual size of the melon BAC clones, with most likely complete
sequences for 50 of the BACs, and a total sequence coverage of 39x. The accuracy of the assembly was assessed
by comparing the previously available Sanger sequence of one of the BACs against its 454 sequence, and the
polymorphisms found involved only 1.7 differences every 10,000 bp that were localized in 15 homopolymeric
regions and two dinucleotide tandem repeats. Overall, the study provides approximately 6.7 Mb or 1.5% of the
melon genome. The analysis of this new data has allowed us to gain further insight into characteristics of the
melon genome such as gene density, average protein length, or microsatellite and transposon content. The
annotation of the BAC sequences revealed a high degree of collinearity and protein sequence identity between
melon and its close relative Cucumis sativus (cucumber). Transposon content analysis of the syntenic regions
suggests that transposition activity after the split of both cucurbit species has been low in cucumber but very high
in melon.

Conclusions: The results presented here show that the strategy followed, which combines shotgun and BAC-end
sequencing together with anchored marker information, is an excellent method for sequencing specific genomic
regions, especially from relatively compact genomes such as that of melon. However, in agreement with other
results, this map-based, BAC approach is confirmed to be an expensive way of sequencing a whole plant genome.
Our results also provide a partial description of the melon genome’s structure. Namely, our analysis shows that the
melon genome is highly collinear with the smaller one of cucumber, the size difference being mainly due to the
expansion of intergenic regions and proliferation of transposable elements.
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Background

During recent years an important effort has been made
to increase the tools available for the genomic analysis
of major plant crop species. Since the first genome
sequence available of Arabidopsis thaliana [1], several
others have been published. They include model plants
such as Brachypodium [2] but, increasingly, species that
have been chosen for their importance in agriculture.
For example the rice [3], maize [4], sorghum [5] or soy-
bean [6] genomes are complex but the wealth of genetic
information matches their economic interest. Conse-
quently, for both scientific and economic reasons an
increasing number of plant genomes are being analyzed,
providing important resources useful for their biological
study and breeding.

Several species of interest from both scientific and
economic perspectives are of the Cucurbitaceae family.
These include melon, cucumber, watermelon and
squashes, all of which have been the object of biological
and agricultural interest for centuries. In recent years
various molecular tools have been established. For
instance, the first assembly of the cucumber genome (7],
as well as an increasing number of genetic and genomic
resources developed for melon, a diploid species with a
relatively compact (around 454 Mb [8]) genome [9].
These include tools such as a collection of more than
129,000 ESTs [10,11], BAC libraries [12,13], oligo-based
microarrays [14,15], TILLING and EcoTILLING plat-
forms [16,17], a set of near isogenic lines (NILs) [18]
and several melon genetic maps [11,19-25]. Recently, we
have built a physical map with 0.9x genomic coverage
using both a BAC library and a genetic map previously
developed in our laboratories [http://melonomics.upv.es/
public_files, [26]], the first report of such a genomic
resource of a Cucurbitaceae species so far. This physical
map has also been integrated with the genetic map by
anchoring a number of physical contigs (representing
12% of the melon genome) to 175 known genetic mar-
kers. These tools have been useful in the study of inter-
esting agronomical traits such as virus or fungi
resistance [27,28], sex determination [29,30] or the con-
trol of ripening [31,32]. These results demonstrate that
molecular genetic approaches can successfully be used
in melon to address basic questions of biological or
agronomic relevance.

More extensive sequence information would be
invaluable to complete the picture of the melon geno-
mic landscape. Indeed, the sequences of only a few
selected genomic regions have been published, totaling
no more than 500 kb [29,33-35] and as of May 2010 no
more than 173 melon genes can be found in GenBank
[11], although a collection of ESTs probably represent-
ing more than 70% of the transcriptome is currently
available [11]. The sequencing of the Sorghum genome
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has shown the feasibility of sequencing a plant genome
larger than that of melon (730 Mb) using a Sanger-
based whole genome shotgun approach [5]. However,
the development of new massively parallel sequencing
technologies allows envisaging a complete sequencing of
the species at higher speed and at lower cost than pre-
vious Sanger-based methods. To this end, both whole
genome sequencing approaches as well as map-based,
BAC-to-BAC strategies have been proposed to sequence
plant genomes [36,37].

A small number of research projects involving 454
sequencing of BAC clones have currently been pub-
lished. In a pioneering study aimed at analyzing how
454 technology would perform on template derived
from large genomes rich in repetitive content, four bar-
ley BAC clones 102-120 kb long, two of which had been
previously sequenced using Sanger technology, were
sequenced using 454 [38]. The results showed that
gene-containing regions could efficiently and accurately
be assembled into contigs, even at read coverages as low
as x10.

In a later work eight BACs belonging to a minimum
tiling path covering ca. 1 Mb of the Atlantic salmon
genome were sequenced using 454 technology, the first
published use of paired-end reads for de novo sequence
assembly [39]. This study demonstrated that although
the inclusion of paired-end reads greatly improved
sequence assembly, there remained a significant num-
ber of gaps when compared to Sanger-generated
sequencing data. Thus the authors concluded that,
when it comes to de novo sequencing complex gen-
omes, 454 sequencing should be restricted, at least for
the time being, to establishing a set of ordered
sequenced contigs.

Although these studies show that 454 sequencing can
be used to assemble gene-containing regions from geno-
mic sequences using a BAC-to-BAC approach, the cost
of 454 sequencing individual BACs has led to consider
pooling individual clones as a means to increase
throughput and reduce the cost of genome sequencing.
In one published study, 166 BACs totalling 20 Mb were
divided into six pools of overlapping BACs, aided by
paired-end sequencing. These were then used to 454-
sequence a minimum tiling path which covered an
entire chromosome arm from Oryza barthii [37]. The
report shows that pooling BACs does not increase the
complexity to a degree that makes assembly impossible,
what makes this approach a feasible strategy for redu-
cing the cost of BAC sequencing. In another work 91
barley BAC clones, pooled by sets of 12 or 24, were
sequenced using 454 technology [40]. The introduction
of short sequence tags to fragmented BAC DNA prior
to pooling and sequencing helped to resolve the assem-
bly of multiplex sequencing data by establishing
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relationships between BAC clones and sequence reads,
reducing sample complexity.

Here we present a pilot project aiming to sequence
two pools of 35 and 23 melon BACs using the 454 sys-
tem and a combination of shotgun and paired-end
sequencing. The goal of the study was twofold: obtain
sequence data for a significant proportion of the melon
genome and thus insight into its structure, and test the
strategy of massively sequencing pools of BACs. The
results obtained allow an accuracy assessment of 454
sequence and assembly data as compared with sequence
data produced using classical Sanger technology. Over-
all, the study provides approximately 7 Mb or 1.5% of
the melon genome as a first step towards the complete
sequence. The analysis of this data has provided insight
into characteristics of the melon genome such as gene
density, transposon content and synteny with cucumber.

Results and discussion

Selection of BAC clones for pooling and sequencing

Two pools of DNA prepared from BACs were
sequenced using the 454 pyrosequencing method. These
BACs had been produced from DNA of the double hap-
loid line PIT92 obtained from the cross of PI 161375
and T111 as described in [12].

A set of 178 genetic markers selected from previous
versions of the PI 161375 x T111 melon genetic map
(mainly RFLPs [21] and SNPs [24,31,41,42]) were used
to anchor 845 BAC clones from our genomic library to
the genetic map [26]. Of these, a batch of 32 BACs
anchored to genetic markers distributed throughout the
genome (See Figure 1) were chosen for 454-sequencing.
In order to test the quality of the sequencing and
assembly procedures, one previously Sanger-sequenced
BAC (Cm13_J04, Acc. No. EF657230.1) was selected
from the MRGH63 contig constructed on the basis of
BAC end information [12,35]. We also added to the
pool BACs Cm43_H20 and Cm14_M22 of this contig
that are known to overlap with the former (Additional
file 1 Figure S1). In all, this first pool of BAC clones
consists of 35 BACs mapping to 33 different loci.

A second batch of 20 BACs anchored to genetic mar-
kers distributed throughout the genome but different
from those corresponding to the first set of 35 BACs
was also chosen for 454-sequencing (see Figure 1).
Three additional BACs were included in this second
pool: the above-mentioned BAC Cm43_H20, and two
randomly chosen BAC clones not linked to any known
genetic marker (BACs Cm21_I02 and Cm12_I23). In all,
the second pool consists of 23 BACs mapping to at least
21 different genetic loci.

In all, the selected two sets of BACs represent an esti-
mated 7.5 Mb of the melon genome, based on BAC
library average insert size. The complete list of selected
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BAC clones, together with their corresponding genetic
markers can be found in Table 1. Information regarding
genetic map position, marker type and references of the
genetic markers can be found in the Additional File 2
Table S1.

Sequencing and assembly

Both shotgun and 3 kb paired-end libraries were con-
structed for each pool of BACs and the sequencing was
carried out independently as described in the Methods
section. A summary with the details of the different 454
runs, including number of reads, total length and aver-
age read size can be found in Table 2. In total, over one
million reads representing 274 Mb of sequence from the
35 BACs pool and over 400,000 reads totaling 105 Mb
from the 23 BACs pool were produced. The raw data
(sff files) have been deposited in the SRA archive of the
NCBI under the accession number SRA024701.1.

A global assembly of all reads from both BAC pools
was performed as described in the Methods section. In
addition, two independent assemblies were performed
using reads from each pool. The reduced complexity in
the separate assemblies of individual pools of BACs
would suggest a more accurate assembly. Indeed, the
number of contigs slightly increases and their size
decreases in the global assembly, but overall, the result
of the global assembly resembles the results from the
assemblies of the individual BAC pools, except for a few
cases. For example, in the case of the BAC Cm54_I13,
we obtained a single scaffold in the 35 BACs pool
assembly corresponding to two scaffolds from the global
assembly. What separates the two scaffolds (when
aligned to the single one) is a 273 bp gap flanked by
several TA motives. On the other hand, scaffold00040
from the global assembly contained 631 additional
nucleotides and a 522 bp long gap flanked by AT
repeats at one of its extremes compared to its counter-
part scaffold from the 23 BACs pool assembly. As we
do not have a reference genome, we considered the lar-
ger scaffold as reference. A detailed summary of the
whole process with the metrics of the three assemblies
can be found in Table 3. Based on this information, we
conclude that for assembling a modest number of BACs
it is not worth separating them in smaller pools
(increasing the sequencing costs), and if reduction of
complexity is imperative (when dealing with very repeti-
tive genomes, for example) then the extreme approach
could be considered and barcode each BAC.

The assignment of contigs and scaffolds to BACs was
performed using anchored genetic markers and BAC-
end sequences as described in the Methods section.
Also, the information from the C. melo FPC physical
map [26] together with BAC-end sequences from some
BAC clones in FPC contigs allowed us to manually edit
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Figure 1 Distribution of the genetic markers used to anchor the sequenced BACs to the C. melo genetic map. Linkage groups are
numbered according to the C. melo map of Deleu et al. [24]. Map distances are indicated on the left in cM. Markers in italics have been placed
in an approximate position from Oliver et al. [21].

two scaffolds of the final assembly. The physical map
was also useful in assigning BACs Cm21_I08 and
Cm12_I23 to their corresponding scaffolds, as no
genetic markers correspond to these BACs. Finally, the
previously Sanger-sequenced BAC Cm60_K17 (Acc. No.:
AF499727.1, [12]) was added to the alignment of the
sequenced BACs from the MRGH63 contig in order to
extend the sequence used for subsequent analysis (see
Additional file 1 Figure S1).

The final assembly consists of 73 scaffolds totaling 6.3
Mb, 73% of which are longer than 60 kb, with average
scaffold size 86.8 kb and the largest scaffold 304 kb
long; also, 744 unscaffolded contigs totaling 382 kb of
sequence remain (Table 3). The sequence coverage of
the final assembly is 39x, calculated as the ratio between
the total length of the sequence reads and the assembly

sequence length. Paired-end reads are used in the pro-
cess of sequence assembly to join contigs (formed by
read alignments) in structures called scaffolds, which
represent sorted and correctly orientated contigs that
are separated by gaps which sizes are estimated based
on the average paired-end size (see, for example, [39]).
The N50 contig size of our assembly was rather small
(30.6 kb) compared to the N50 scaffold size (107.6 kb).
This result confirms the importance of paired-ends
when it comes to assembling a complex genome using
454 sequences.

Regarding the assignment of sequences to particular
BACs, BAC Cm47_C02 could not be assigned to any
scaffold or contig and BAC Cm46_I24 was assigned to a
small contig of less than 1 kb using the genetic marker
sequence information, and to another two small scaffolds
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Table 1 Correspondence between sequenced BAC clones, genetic markers and assembled contigs/scaffolds*
Scaffold
Linkage group Marker name®  BAC name Name GenBank ID Length (bp) Stretches of Ns BAC-ends
Found®
No. Length (bp)
| MC216 Cm57_M112 Contig311 HM854822 626 0 0 0
| MC279 Cm31_J02' Scaffold00087 HM854819 126,619 3 1,334 2
| EST1.16 Cm33_F23? Scaffold00078 HM854813 113,787 11 9,016 2
| EST5.27 Cm43_021" Scaffold00052a HM854797 131,697 10 3452 2
Il MC313 Cmo05_B012 Scaffold0006 HM854766 126,054 4 4,978 2
Il 52B5SP6 Cm52_B05' Scaffold52B05 HM854760 138922 38 29,090 2
Il MC252 Cm46_G13' Scaffold0009 HM854768 151,031 2 529 2
Il MC127 Cmo05_P10? Scaffold05P10 HM854751 114,263 7 5,100 1
Il MC148 Cm45_K10? Scaffold00035 HM854788 105,652 2 630 2
1 CmEXP2 Cm24_H21' Scaffold0003? HM854763 86,310 3 1,125 2
Il MC054 Cm52_C09' Scaffold00024b HM854780 61,053 2 666 1
Il MC032 Cm55_F19' Scaffold55F19 HM854755 110,853 1 9,792 2
v MC344 Cm33_M05° Scaffold00077 HM854812 148,622 6 2,636 2
v CmelF4A-2 Cm59_B11" Scaffold59B11 HM854756 100,000 5 5,558 2
IV MC275 Cm11_112! Scaffold11112 HM854757 110,000 9 6,210 2
IV MC239 Cm06_A03' Scaffold00012a HM854770 75,205 0 0 1
vV MC060 Cm46_006° Scaffold000413 HM854791 103,741 2 668 2
v CmEthind Cm14_C18' Scaffold0001 HM854762 108,322 1 478 2
vV MC007 Cm52_M23? Scaffold00070 HM854810 112,968 2 567 2
Y MC233 Cm24_GO5' Scaffold00017 HM854775 82,645 1 247 2
Contig00219 HM854821 810 0 0 0
Vv EST2.22 Cm46_124 Scaffold00044 HM854793 12,974 4 4832 1
Scaffold00071 HM854811 20,426 7 9,835 1
V MRGH63 Contig MRGH63:  ScaffoldMRGH63 HM854749 302,015 9 4,457
Cm13_J04'* 2
Cm14_M22' 2
Cm43_H20'? 2
v MC276 CmO1_N3' Scaffold00015 HM854773 180,444 5 2,607 1
\Y MC268 Cm02_C0o4° Scaffold00031 HM854785 105,693 4 1,877 2
\Y MC008 Cm31_G08? Scaffold00033 HM854786 109,145 3 764 2
\Y MC251 Cm02_K14' Scaffold00058 HM854801 121,212 8 2,788 2
\Y Cl_56-B01 Cm27_Fo3' Scaffold27F03 HM854758 96,265 1 506 2
\Y MC042 Cm20_H14' Scaffold00018 HM854776 96,294 3 891 2
Vil MC373 Cms55_C15' Scaffold00057 HM854800 98,578 1 316 2
Vil F271 Cm45_K01' Scaffold45K01 HM854759 100,000 " 7,803 2
Vil F149 Cm47_C02? - - - - - -
Vil EST5.15 Cm47_A05' Scaffold0004 HM854764 101,589 3 1,515 2
VIl FO80 Cm22_K19' Scaffold00081 HM854815 99,638 6 2,137 2
VIl Cfd9 Cm06_D16' Scaffold00025 HM854781 102,876 13 10,731 1
VIl MC208 Cm19_K17? Scaffold00023 HM854779 125428 1 242 2
IX MC092 Cm24_Ho3? Scaffold24H03 HM854823 106,131 3 1,282 2
IX FO36 Cm34_G20' Scaffold00069 HM854809 125,129 2 1,825 2
IX MC203 Cm54_J04° Scaffold54J04 HM854753 100,000 6 13,775 2
IX CmERF1 Cm54_13" Scaffold54113 HM854824 94,153 3 1,036 2
IX EST1.17 Cm10_D04' Scaffold10D04 HM854761 154,039 45 28,530 2
X EST1.10 Cm03_A21" Scaffold00079 HM854814 126,557 2 482 2
X CmXTH5 Cm41_Ho09' Scaffold0005 HM854765 136,275 2 696 2
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Table 1 Correspondence between sequenced BAC clones, genetic markers and assembled contigs/scaffolds* (Continued)

X EST5.29 Cm19_G01? Scaffold00013
X CmEXP3 Cm54_E01° Scaffold54E01
XI MC337 Cm12_F09’ Scaffold00028
Xl MC375 Cm03_C12' Scaffold00014
Xl EST6.79 Cm59_N09' Scaffold00085
XI A_08-D10 Cm24_1032 Scaffold24103
Xl EST2.75 Cm33_017" Scaffold00051
Xl MC123 Cm59_C10° Scaffold59C10
Xl MC132 Cm03_102' Scaffold00086
Xl MC330 Cm09_A17" Scaffold00034
Xl MC286 Cm05_010° Scaffold00020
- - Cm21_108° Scaffold00061
- - Cm12_123° Scaffold00010

HM854771 100,283 14 8,175 2
HM854754 100,000 18 13,832 2
HM854783 118830 3 1,840 2
HM854772 128906 13 9,538 1
HM854817 102,799 1 338 1
HM854752 121,276 16 8,734 1
HM854796 123,309 3 1,296 2
HM854750 10,343 3 1,861 0
HM854818 79,495 4 3,249 1
HM854787 96,336 1 271 2
HM854778 142,670 8 2,708 2
HM854803 146,020 12 5,169 2
HM854769 114,336 9 8,517 2

*Additional information regarding sequence and annotation characteristics of the assembled sequence can be found in the Additional file 3 Table S2

“Genetic marker information can be found in the Additional file 2 Table S1
POne (1), both (2) or none (0) BAC-ends found on the scaffold/contig sequence
'First pool of BACs

2Second pool of BACs

3Marker sequence not found. Scaffold assignment based on information derived from the C. melo physical maphttp://melonomics.upv.es/static/files/public/

physical_map/ and BAC-end information
“Sequenced previously by Shotgun-Sanger [35], Acc. No. EF657230

using both BAC-end sequences. All other BACs were
assigned to a unique scaffold or contig, two of which
were smaller than 15 kb, another five in the 60-90 kb
range while the rest was over 90 kb long (Table 1).

The search for BAC ends in the final set of contigs
and scaffolds suggests that at least 42 scaffolds cover the
complete sequence of 44 BACs (including the three
BACs belonging to the scaffold MRGH63). An average
of seven stretches of Ns (produced as a result of contig
scaffolding) was found per scaffold and the total length
of all Ns accounts for 4.8% of the final assembly length
(see Additional file 3 Table S2). Nine additional scaf-
folds assigned to as many BAC clones were found to
contain only one BAC border each; however, six of
these scaffolds were bigger than 100 kb, and so they
probably represent complete BAC sequences but for

small deletions at their borders, while the rest measured
between 60 and 80 kb and could represent a significant
proportion of their correspondent BAC sequences.
Finally, BAC borders were absent from two BAC
sequences (corresponding to BACs Cm57_M11 and
Cmb59_C10), both smaller than 11 kb and therefore
most likely incomplete.

As a summary, of a total of 57 pooled BACs, most
likely complete sequences were produced for 50 BAC
clones, three were incomplete but in the range of 60-
80 kb and four BACs were attributed very limited
sequence information. As the assignment was per-
formed using a small amount of sequence information,
namely the marker and BAC-end sequences (not avail-
able for all BACs), any sequence shorter than the full
BAC insert size has few chances of being assigned to

Table 2 Details of the 454 FLX runs from which sequence data were obtained

Pool Sequencing Library No. of reads No. of Total length Average
plate type Paired-end (bp) read size
regions reads (bp)
35 BACs
2/2° Shotgun 445,232 - 110,498,601 248
2/4 Paired end 89,392 3,152 23,214,413 260
2/2 Paired end 557,452 126,681 139,772,537 251
23 BACs
2/2 Shotgun 261,304 - 64,679,158 247
3/8 Paired end 155,166 56,990 40,110,640 259

“Includes 8,046 reads obtained from the titration process of the samples as well as 20,627 reads from a 1/2 region that was poorly sequenced


http://www.ncbi.nlm.nih.gov/pubmed/854771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854750?dopt=Abstract
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http://www.ncbi.nlm.nih.gov/pubmed/854787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/854778?dopt=Abstract
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Table 3 Metrics for BAC assemblies and final results after manual correction.*

35 BACs 23 BACs Global assembly Manual correction
57 BACs (two pools together)
No. of contigs® 514 247 797 -
No. of bases in contigs 3,936,343 2,325,066 6,127,262 -
Average contig size (bp) 7,658 9413 7,687 -
N50 contig size (bp) 32,583 32,458 30,630 -
Largest contig size (bp) 117,242 112,451 123,360 -
Q40 plus bases 99.5% 99.5% 99.5% -
No. of scaffolds 58 32 87 73
No. of scaffolds larger than 20 kb 41 25 62 57
No. of bases in scaffolds 4,040,161 2,307,575 6,206,490 6,340,685
Average scaffold size 69,657 72,111 71,338 86,882
N50 scaffold size 107,196 113,599 107,604 113,787
Largest scaffold size 222,620 200,453 212,424 303,725
No. of unscaffolded contigs® 479 234 798 744
No. of bases in unscaff. contigs 224871 121,734 417,982 382,726
Average unscaff. contig size 469 520 524 514
Coverage x46 x25 x39 x39

*Reads from all 57 BACs were processed together in one assembly run. Additional assemblies of each BAC pool were independently done and served for
comparison purposes and to manually correct some scaffolds in the global assembly

?Only contigs larger than 500 bp

PTwo previously published BACs were included in this scaffold (see Methods section and Additional file 1 Figure S1)

“Contigs larger than 100 bp

any particular BAC. This is obvious for the BAC
Cm46_124 where with each BAC-end sequence and the
marker sequence we assign three rather small
sequences (Additional file 3 Table S2). In our results, a
total of 374 kb distributed in 20 contigs/scaffolds
longer than 2,000 bp remained unassigned after the
final assembly and could account for most of the
sequence of those four problematic BACs. All markers
but one (F149), and all available BAC-end sequences
but three, matched against a contig or scaffold. The
nucleotide sequences of contigs and scaffolds assigned
to BACs as well as of those unassigned assembly
sequences larger than 2 kb have been deposited in the
GenBank database and their accession numbers can be
found in the Additional file 3 Table S2.

The number of gaps per Mb (61) and the estimated
amount of missed sequence in our main assembly (5%)
are lower than those values from the above-mentioned
studies using 454 sequencing of BAC clones [37-39], a
fact most probably due to the absence of paired-end
sequencing in [38,40], to the short reads that were being
produced at the erlier stages of 454 technology (100 bp
on average) [38], to the complexity of the barley and sal-
mon genomes as compared with melon’s [38-40], and to
the higher amount of assembled sequence in the case of
O. barthii [37]. In summary, although using shotgun
and paired-end libraries of pooled BACs remains a
costly proposition for sequencing a whole genome, it is
well adapted to certain situations. Indeed, our results

show that it is a feasible and cost-efficient strategy for
sequencing particular regions of interest of relatively
compact genomes like that of melon. This approach
would also be useful in genome walking strategies for
gene cloning, or resolving a particular region where a
physical map is available.

Sequence accuracy assessment
The quality of the final assembly was assessed by com-
paring the sequence from scaffold MRGH63 corre-
sponding to BAC Cm13_J04 (Additional file 1 Figure
S1) against the 99 kb-long sequence of the same BAC
previously obtained using a shotgun-Sanger approach
[35]. Table 4 shows the differences between the Sanger
and 454 sequences. Apart from five small stretches of
Ns representing 3.6% of the BAC length, the only other
discrepancies are 15 homopolymeric regions and two
dinucleotide tandem repeats. The differences in homo-
polymeric regions were found in 15 of the 26 mononu-
cleotide repeats longer than 11 nt, and in all cases but
one the 454 repeat resulted to be one to three nucleo-
tides shorter than the Sanger sequence. It is interesting
to note that no differences were found in the 896 mono-
nucleotide repeats shorter than 11 nt. The discrepancies
in dinucleotide tandem repeats affected two (CT),5 and
(GA),; microsatellites.

It has been already described that Sanger and 454
technologies have a generally comparable level of accu-
racy regarding genic regions or other single-copy
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Table 4 Differences between Sanger- and 454-sequences of BAC Cm13_J04.

Length of Sanger-sequence 98,716 bp
Stretches of Ns on 454-sequence 5 3,572 bp (3.6%)
Homopolymers length Sanger' 454 differences®
No. Motif
A/T

<10 847 0

1 5 0
12 5 3 (AT
13 3 2 (A/T)1>
14 2 1 (A/T)13
15 3 2 (A4
1 (A/T)13
16 1 1 (A/T)14
17 3 2 (A/T)ys
18 1 1 ATy
22 1 1 (A/T)1o

24 1 0
28 1 1 AsCA3

C/G
5-7 49 0
(@M (CT);sCTACTTACTTACTTACNNNNNNNC(CT)14
(GA)z4 (GA)21GTAGTACGTACN 23(GA)g

"Number of homopolymers in the Sanger sequence

2Number of homopolymers in the 454 sequence showing differences with the corresponding homopolymers in the Sanger sequence

sequences, homopolymeric stretches being the main
source of read errors in both techniques when low copy
regions are considered [37,38,43,44]. Previous reports
have also shown that longer stretches of A and T are
more likely to cause problem when using pyrosequen-
cing [38]. Indeed, there is a tendency of homopolymers
to be shorter in the 454 sequence than in the Sanger
reads, although at least a report exists where the
stretches were consistently found to be one nucleotide
longer in the 454 sequences [38,43]. In summary, the
polymorphisms detected between the melon 454 and
Sanger sequences in a 100 kb interval involved only 1.7
differences every 10,000 bp, a figure close to previously
reported values [37,38].

Besides homopolymers, repetitive DNA is known to
be more problematic for 454 sequencing than for San-
ger due to the shorter length of the 454 reads. Repeti-
tive regions can be collapsed into one consensus
contig causing gaps to appear in the final assembly.
This may be the main reason behind the gaps account-
ing for an estimated loss of ca. 5% of melon sequence
in our final assembly. Indeed, all five stretches of Ns in
Cm13_J04 consensus sequence are found in two
regions that contain repetitive sequences such as a
transposable element and a TIR-NBS-LRR resistance
gene (data not shown).

Sequence annotation

AD initio prediction of protein coding, tRNA and rRNA
genes was carried out as described in the Methods chap-
ter. The predictions were validated by homology with
protein sequences at NCBI databases and with ESTs
from the melon unigene v3 database at ICUGI [11]. A
census of simple sequence repeats (SSRs) was also per-
formed using the msatcommander software.

A summary of the sequence and annotation features
of all 58 contigs and scaffolds longer than 20 kb, repre-
senting 6.2 Mb of genomic sequence, can be found in
Table 5. As a whole, 616 protein coding genes (exclud-
ing transposons) were predicted, of which 73.2% were
found to show homology with known C. melo ESTs.
The average gene density is estimated to be 9.9 genes
for each 100 kb but varies on the 2-20 range when indi-
vidual scaffolds are considered; the average intron and
exon length are respectively 393 bp and 238 bp and
number of exons per gene is 4.9, with 46% of coding
sequence being introns. Predicted proteins were 386 aa
long on average. Regarding SSRs, 4,430 microsatellites
were found representing 1.25% of the total sequence,
about one SSR every 1.3 kb. The GC content composi-
tion was 33%, eleven tRNA genes were found in five
BAC clones and no rRNA genes could be found in the
analyzed sequence. Additional file 3 Table S2 contains a
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more detailed report of the individual characteristics of
each scaffold or contig larger than 2 kb.

The recent publication of the Cucumber sativus gen-
ome sequence begs the comparison of sequence and
annotation characteristics of both cucurbit species [7].
Overall, the statistics of protein-coding genes from both
cucurbits are quite similar. The predictions for the
cucumber genome are a gene density of 10 per 100 kb,
mean protein length of 349 amino acids, average num-
ber of exons per gene, exon length and intron length of
4.8, 238 bp and 483 bp, respectively, and tRNA gene
density of 2.9 per Mb. While the gene density, mean
exon length and average number of exons per gene are
very similar in both species, in cucumber the protein
length is only slightly smaller (0.9x), and mean intron
length is just 1.2 times greater.

The apparent similar gene density, together with the
similarity in average protein length, number of exons
and average exon and intron lengths, seems contradic-
tory with the difference in genome size between both
species. Indeed, the estimated size of the melon genome
is 1.3x that of cucumber [7,9]. It has to be taken into
account, however, that the cucumber gene density was
calculated based on as much as 70% of the complete
genomic sequence, which most probably included gene-
poor regions, while the melon gene density has been
estimated using BAC clones that have gene- or EST-
based genetic markers and thus probably represent
gene-rich regions. Therefore, it might be the case that
the actual melon gene density is lower than that of

Table 5 C. melo BAC sequences characteristics?
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cucumber, hypothesis that is supported by the analysis
of syntenic regions from both genomes (see below in
the “Analysis of microsynteny” section).

Transposon content of the sequenced BACs
Transposons were annotated using sequence similarity
searches with previously characterized transposons as
well as by Ab initio methods based on transposon struc-
tural characteristics. As expected, most of the elements
found belong to the retrotransposon class of mobile ele-
ments, with the Gypsy family being the most repre-
sented. However, the fraction of the genome these
elements occupy is apparently smaller than in other
genomes of similar size. Indeed, while retrotransposons
account for 20% of the genomes of grapevine (504.6
Mb) and Lotus japonicus (472 Mb) [45,46], these ele-
ments seem to account for only 7.2% of the melon gen-
ome (454 Mb) (Table. 6). Retrotransposons are not
randomly distributed in genomes and while some ele-
ments preferentially integrate in gene-rich regions (see
for example [47]), others target heterochromatic regions
for integration, in particular those belonging to the
Gypsy family which are usually present at higher copy
number [48]. Thus, the apparent low retrotransposon
copy number could be due to the fact that heterochro-
matic regions are under-represented in the 1.5% fraction
of the genome analyzed, which was selected to be repre-
sentative of the gene-rich regions of the melon genome.
We have also found representatives of all the major
families of DNA transposons, including CACTA, MULE,

Sequence length excluding stretches of Ns
Number of predicted protein coding genes®
Number of predicted protein coding genes with homology to C. melo ESTs

Total sequence length 6,230,040 bp
5,958,994 bp
616
451 (73.2%)
tRNA genes "
Gene density© 9.9 genes/100 kb (1.5 - 19.7, SD: 4.3)
Average exon length 238 bp
Average intron length 393 bp

Average protein length®
Average% of introns in coding sequence®

Transposable elements®

Exons per gene 4.9 (1-29, SD: 4.4) (74% of genes < 6 exons)

(23% intronless)
386 (34-2,156, SD: 268)
456 (4.3 - 95.5, SD: 20.6)
33 (302 - 387, SD: 1.34)

4,430 (74,590 bp, 1.25% of total sequence)
1 SSRs/1.3 Kb

139

GC content (%)
SSRs

®From the analysis of all 57 scaffolds plus one contig longer than 20 kb
bGenes from transposons not counted

“Partial genes at BAC borders counted as 0.5 genes

%Transposon proteins not considered

€ ORFs without introns not considered

Minimum repeat lengths considered: 10 bp (mononuc.), 12 bp (di- and trinuc.), 16 bp (tetranuc.), 20 bp (pentanuc.) and 24 bp (hexanuc.)

9See Table 6 for a more detailed analysis of transposon content
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hAT, PIF and Helitron elements, covering in total 0.93%
of the analyzed sequence (Table 6), which is consistent
with what has been reported for the genomes of grape-
vine (1.98%) [49] and Lotus japonicus (0.97%) [46].

Analysis of microsynteny
Four of the longest scaffolds (9, 15, 77 and MRGH®63,
totalling 782 kb) were used to search the cucumber gen-
ome assembly [50] for syntenic regions, as described in
the Methods section. As it can be expected from the
close phylogenetic relatedness of these two species, a
high degree of collinearity was found in all four regions
analysed (Figure 2). The relative syntenic quality (see
the Methods section) ranged from 84% (for scaffold
MRGHS63) to 97% (for scaffold00015), averaging 92%,
and the homologous protein sequences rendered in all
cases e-values lower than 1E-46 with an average identity
of 87% when aligned using BLASTP (see Additional file
4 Table S3). Regarding the annotation characteristics of
the predicted genes, the average protein lengths of the
four melon regions analyzed were x0.8-x1.2 those of
cucumber, with the syntenic melon genes being, as an
average, only x0.96 smaller than the cucumber ones; the
average number of exons of the melon syntenic regions
were x0.84-x1.1 those of the cucumber regions, with the
syntenic melon genes having, as an average, only x0.92
less exons than the cucumber ones; also, although the
average exon length of all syntenic melon genes was
almost identical to that of cucumber, the average
intron length of the syntenic melon genes was x1.3
that of their cucumber counterparts (Additional file 4
Table S3).

Besides, the orientation of the putative syntenic genes
was found to be conserved in all cases. However, a

Table 6 Transposon content in the C. melo sequenced
BACs®

Family Copies  Total lenght Analyzed sequence
(no.) (bp) (%)
DNA transposons
CACTA 15 30,238 048
hAT 4 8,726 0.14
MULE 6 17,836 0.28
PIF 1 842 0.01
helitron 1 830 0.01
Total 27 58,472 0.93
Retrotransposons
Copia 15 49,606 0.79
Gypsy 18 80,452 128
Non-LTR 3 9,664 0.15
Non-classified 77 313,326 50
Total 113 453,048 7.2

®From the analysis of all contigs and scaffolds longer than 2 kb
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number of genes were duplicated in melon. These
included the expansion of a cluster of NBS-LRR genes
present in scaffold MRGH63, which is particularly inter-
esting as the Vat gene and other disease resistance
genes have been mapped to this region [33]. NBS-LRR
genes are the main family of resistance genes in plants,
and are frequently found in clusters [51]. Highly con-
served gene order and content together with 95% of
sequence similarity over coding regions has already been
reported by Huang et al. based on the comparison of
four sequenced BAC clones against the sequenced
cucumber genome [7].

Besides the duplication of several genes, a major dif-
ference between cucumber and melon syntenic regions
is the number of transposon insertions [Figure 2]. The
cucumber sequences analysed contain only two retro-
transposon insertions, one of which seems very old as it
is highly degenerated. On the contrary, the melon synte-
nic regions contain three DNA transposons (two hATSs
and one MULE) and 15 retrotransposons (most of them
from the Gypsy superfamily), including the degenerated
retrotransposon found in cucumber. In particular, trans-
poson activity appears to account for the expansion of
ca. 60 kb in the melon scaffold0077 relative to its
cucumber counterpart. In scaffold MRGH63, a localised
transposon number amplification together with duplica-
tion of melon resistance gene homologs (see below)
accounts for an 88 kb-long expansion of the sequence
of melon relative to that of cucumber. Also, transposons
were found to be putatively involved in gene disruption
processes in scaffolds 9 and MRGH63.

These results suggest that transposition activity after
the divergence of the two ancestors of melon and
cucumber has been low in cucumber but very high in
melon. This transposon amplification and mobilization
could be a reason for the 1.8x increase in size of the
melon syntenic regions. Bearing in mind that the melon
genome is estimated to be 1.3x greater that of cucum-
ber, it can tentatively be assumed that transposon activ-
ity may be mainly responsible for that difference in
genome sizes.

It is interesting to note that almost half of the melon
specific transposons are interspersed with NBS-LRR pre-
dicted genes that potentially form resistance gene clus-
ters. Gene duplications and transposon insertions have
been proposed to provide a structural environment that
permits unequal crossovers and interlocus gene conver-
sion allowing rapid evolution of resistance genes [51]. In
addition, the presence of active retrotransposons inter-
spersed with resistance genes may also contribute to the
resistance gene regulation by silencing related mechan-
isms [52]. A detailed analysis of syntenic regions con-
taining putative resistance genes between melon and
cucumber may provide new information on the
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boxes). Figure drawn to scale.

evolution of resistance genes and the development of
new resistances in cultivated crops.

Conclusion

A set of 57 BAC clones from a double haploid line of
melon was sequenced in two pools with the 454 sys-
tem using both shotgun and paired-end approaches
followed by bioinformatic assembly of the fragments
obtained. From this assembly it was possible to obtain
most likely complete sequences for 50 of these BACs,
as judged by the length and the presence of BAC-end
sequences, with a final coverage of 39x. The accuracy
of the assembly was excellent, compared with a BAC
clone already sequenced with the Sanger method,
except in a small number of repetitive sequences, con-
sistent with other 454 sequencing projects [37,38].
These results show that 454-sequencing of pooled

BACs, using both shotgun and paired-end libraries, is
a feasible strategy for sequencing long stretches of
genomic sequence from medium-size genomes such as
that of melon. However, correction using other
sequencing techniques would be needed for medium
to high repetitive content regions.

The analysis of the fraction (around 1.5%) of the
melon genome obtained provides a pilot overview of
this species’ genomic structure. Predicted gene annota-
tions were confirmed in 73% of the cases by comparison
with EST collections. This is probably a good measure
of the completeness of the transcriptome information
currently available for this species. The analysis of the
sequences provides an interesting overview of the fea-
tures such as microsatellite content, gene density and
average protein length, revealing similarity to that of its
close relative, cucumber.
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Finally, the comparison of four melon regions totalling
782 kb against the genomic sequence of cucumber (the
only other Cucurbit species where a draft genome
sequence is available) reveals a high degree of collinear-
ity between both species. The analysis of the detected
syntenic regions suggests that the size difference of the
two genomes is due to the expansion of intergenic
regions, mainly through the activity of transposable ele-
ments in melon after the divergence of the two species.
It is particularly interesting to note that almost half of
the detected melon-specific transposons are interspersed
with NBS-LRR predicted genes that potentially form
resistance gene clusters. We have confirmed the utility
of this sequencing method for small genomic fractions,
and the analysis of the data thus obtained has expanded
our understanding of the melon genome structure and
the mechanisms underlying its evolution.

Methods

BAC library

A BamHI BAC library from the double-haploid melon
line ‘PIT92’ (PI 161375 x T111) was previously developed
in our laboratory using pECBACI1 as cloning vector [[12],
http://hbz7.tamu.edu/homelinks/bac_est/vector/
sequence/sequence.htm]. With 23,040 BAC clones dis-
tributed in sixty 384-well plates, an average insert size of
139 kb and 20% empty clones, the library represents 5.7
genomic equivalents of the haploid melon genome.

DNA extraction

Two pools of 35 and 23 BACs were selected for the analy-
sis. Individual preinocules were grown on 1 ml 1 x LB
plus 12.5 pg/ml chloramphenicol at 300 rpm, 37°C, for 17
h. The following day, 30 pl of each BAC clone from the
preinocules were added into 50 ml tubes containing 20 ml
1 x LB plus 12.5 pg/ml chloramphenicol, and grown at 37°
C, 300 rpm for 15 h. The grown cultures were then mixed
to produce two separate volumes representing the two
BAC pools and the bacterial cells were harvested by cen-
trifugation at 6,000 x g for 15 min at 4°C.

Genomic DNA-free BAC DNA extraction was per-
formed using the QIAGEN® Large-Construct Kit (Cat.
No. 12462) following the manufacturer’s instructions.
Both final DNA pellets were resuspended in 500 ul TE
pH 8.0 each.

DNA sequencing

All sequencing was performed with a Roche 454 Gen-
ome Sequencer machine using FLX chemistry. Two
DNA extractions were done from the 35-BACs pool,
one to create a shotgun library and the other one to cre-
ate a 3 kb paired-end library. The shotgun library was
used for one titration run and one full run performed
by Lifequencing S. L. at their premises in Valencia,
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Spain. The paired-end library was sequenced on two
quarters of a plate followed by a full run performed at
our 454 sequencing facility. For the 23-BACs pool, one
DNA extraction was done which served to create a shot-
gun and a 3 kb paired-end library. The shotgun library
was sequenced with a full run while the paired-end
library was sequenced on three eighths of a plate; both
runs were performed at our 454 sequencing facility.

Sequence assembly

Sequence assembly was done using Newbler version 2.3
with default parameters. Reads from all BACs were pro-
cessed together in one assembly run. The sequence of E.
coli strain DH10B (NC 010473.1) was used as screening
database and the vector pECBACI as trimming database,
but without 30 bp of sequence flanking either side of the
BamHI restriction site (see below) http://hbz7.tamu.edu/
homelinks/bac_est/vector/sequence/sequence.htm. Addi-
tional assemblies of each BAC pool were independently
done using Newbler versions 2.3 and 2.0 (data now
shown); results of these assemblies served for comparison
purposes and only in some cases helped to manually cor-
rect some scaffolds in the global assembly.

Sequences of the genetic markers previously anchored
to the analyzed BACs as well as some BAC-end
sequences previously available in our laboratories (Gen-
Bank Acc. Nos. can be found in the Additional file 3
Table S2) were used to assign a sequence to a specific
BAC. Based on this information, in some cases we could
join two scaffolds that corresponded to the same BAC
into a single superscaffold that would represent the
whole BAC insert. In these cases a gap was introduced
between the scaffolds so that the final sequence had the
size of the average insert size of the BAC library. The
manually introduced gaps accounted for 7.25% of all the
gaps in the assembly. The sizes of these gaps in nucleo-
tides are as follow: 500 in Scaffold52B05; 1,209 in Scaf-
fold45K01; 1,538 in Scaffold11112; 1,831 in
Scaffold54E01; 2,288 in Scaffold55F19; 2,586 in Scaf-
fold59B11; and 12,064 in Scaffold54J04.

In order to study how many of the assembled contigs
and scaffolds represented the complete sequence of
BAGCs, those sequences were searched for BAC borders
in the following ways: 1) by searching at their extremes
the 30 bp sequence corresponding to pECBACI; 2) by
blasting against individual reads containing the 30 bp
sequence and 3) by blasting against BAC-end sequences
that were already available for some of the sequenced
BACs [see Additional File 3 Table S2].

Sequence annotation

Ab initio gene prediction was performed using the com-
mand-line version of Augustus 2.3 software http://
augustus.gobics.de/ using A. thaliana as plant model.


http://hbz7.tamu.edu/homelinks/bac_est/vector/sequence/sequence.htm
http://hbz7.tamu.edu/homelinks/bac_est/vector/sequence/sequence.htm
http://hbz7.tamu.edu/homelinks/bac_est/vector/sequence/sequence.htm
http://hbz7.tamu.edu/homelinks/bac_est/vector/sequence/sequence.htm
http://augustus.gobics.de/
http://augustus.gobics.de/

Gonzalez et al. BMC Plant Biology 2010, 10:246
http://www.biomedcentral.com/1471-2229/10/246

The melon unigene v3 collection at ICUGI [11] was
used to improve the Augustus prediction, setting the
minimum identity parameter to 92. In some cases, the
FGENESH annotation software at http://linux1.softberry.
com/berry.phtml, with Arabidopsis as plant model, was
used to complement or improve the Augustus annota-
tion. The predicted coding sequences were checked
against the non-redundant protein databases at NCBI
using BLASTP searching for protein homologs.

tRNA genes were predicted using the tRNAscan-SE
1.21 software http://lowelab.ucsc.edu/tRNAscan-SE/ and
rRNA genes were identified with RNAmmer 1.2 server
http://www.cbs.dtu.dk/services/RNAmmer/. Simple
sequence repeats (SSRs) were searched for using the
msatcommander 0.8.2 software http://code.google.com/
p/msatcommander/; the minimum repeat lengths con-
sidered were: 10 bp (mononucleotides), 12 bp (di- and
trinucleotides), 16 bp (tetranucleotides), 20 bp (pentanu-
cleotides) and 24 bp (hexanucleotides).

Transposons were annotated using Ab initio and
sequence similarity searches integrated in a pipeline
based on Dawgpaws [53]. The programs used for de
novo prediction of LTR retrotransposons included
LTR_STRUC [54], LTR_finder [55] and LTR_seq [56],
and vary in the type of structures they look for, their
stringency and their search algorithms. The homology-
based approach consisted of searching for sequences
that show a high degree of similarity to known transpo-
sons. For this, we compiled nucleotide databases of
already characterized transposons obtained from the
RepBase database [57] as well as NCBI [58]. Likewise,
we constructed protein sequence databases of transpo-
sases from various transposon families, searching NCBI
for combinations of keywords such as “transposase” and
“CACTA”, “hAT”, “Mariner”, “Mutator” or “PIF”. This
approach is useful for corroborating results obtained
from the de novo programs, as well as identifying other
types of transposons such as DNA transposons. The
output of these various programs was converted into
gff3 format and uploaded into the Apollo genome
viewer and annotation tool [59], along with the gene
annotations, for manual curation. As a first step, each
scaffold was examined and putative transposons were
identified according to the computational evidence.
These were then manually inspected to look for LTRs
or TIRs, query NCBI to determine which family they
belong to, and resolve instances of nested or truncated
elements. These bona fide transposons were used to
query the set of scaffolds in similarity searches, aiming
at identifying partial or degenerated copies and defining
transposon families. This third step is particularly rele-
vant when a large amount of sequence data is available,
as aligning many copies of an element aids to precisely
define its borders and find consensus sequences. At this
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point, with the current fraction of the genome available,
we have not found enough copies of a single element to
perform this part of the analysis.

Synteny analysis

Four annotated melon scaffolds were analysed for homol-
ogy with the Cucumis sativus genome assembly deposited
in Phytozome v5 [50], using the BLASTN algorithm. The
selected cucumber regions were annotated the same way
as the melon BAC:s. Pairs of homologous genes were ten-
tatively selected on the basis of the gene annotation and
then confirmed by performing BLASTP alignments of
the correspondent predicted proteins. Syntenic regions
were defined as contiguous regions containing two or
more homologous genes in C. melo and C. sativus, irre-
spective of orientation and exact order of genes, based on
the results of BLASTP comparisons. The relative syntenic
quality in a region, expressed as a percentage, was calcu-
lated by dividing the sum of the conserved genes in both
syntenic regions by the sum of the total number of genes
in both regions, excluding transposable elements and col-
lapsing tandem duplications [60].

Note

The C. melo BAC nucleotide sequences are available in
the DDBJ/EMBL/GenBank databases under the acces-
sion numbers HM854749-HM854824. The raw data can
be found in the SRA archive of the NCBI under the
accession number SRA024701.1.

Additional material

Additional file 1: Figure S1. Schematic representation of the MRGH63
contig.

Additional file 2: Table S1. Genetic markers anchored to the sequenced
BAC clones.

Additional file 3: Table S2. Sequence and annotation characteristics of
the assembled scaffolds and contigs.

Additional file 4: Table S3. Annotation characteristics of the C. melo
and C sativus syntenic regions

Acknowledgements

We gratefully acknowledge Lifesequencing S. L. for technical assistance in
454-sequencing one of the DNA pools. This project was funded by the Plan
Nacional de Investigacion Cientifica of the Spanish Ministerio de Educacién y
Ciencia (Projects BIO2007-61789 to PPR and AGL2006-12780-C02-01 to JGM),
by the Consolider-Ingenio 2010 Programme of the Spanish Ministerio de
Ciencia e Innovacion (CSD2007-00036 “Center for Research in
Agrigenomics”), and by the Departament d'Innovacio, Universitats i Empresa
de la Generalitat de Catalunya. We acknowledge the valuable technical help
from Roche 454 and Roche Spain.

Author details

"Molecular Genetics Department, Center for Research in Agricultural
Genomics CRAG (CSIC-IRTA-UAB), Jordi Girona, 18-26, 08034 Barcelona, Spain.
’|RTA, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB),
Carretera de Cabrils Km 2, 08348 (Barcelona), Spain.


http://linux1.softberry.com/berry.phtml
http://linux1.softberry.com/berry.phtml
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.cbs.dtu.dk/services/RNAmmer/
http://code.google.com/p/msatcommander/
http://code.google.com/p/msatcommander/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM854749
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM854824
http://www.biomedcentral.com/content/supplementary/1471-2229-10-246-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2229-10-246-S2.XLS
http://www.biomedcentral.com/content/supplementary/1471-2229-10-246-S3.XLS
http://www.biomedcentral.com/content/supplementary/1471-2229-10-246-S4.XLS

Gonzalez et al. BMC Plant Biology 2010, 10:246
http://www.biomedcentral.com/1471-2229/10/246

Authors’ contributions

VMG conducted BAC DNA extractions, helped to manually correct the final
sequence assembly, annotated scaffolds, and drafted the manuscript, AB led
the pre-processing of the sequence raw data, produced the sequence
assemblies, and helped drafting the manuscript, EMH and JMC were in
charge of the transposon content analysis and helped drafting the
manuscript, GM constructed the 23 BAC pool shotgun and all paired-end
libraries and performed the sequencing reactions, JGM participated in the
project design, coordinated the BAC sequencing, participated in the
discussion of results, and helped to draft the manuscript, PP conceived and
coordinated the project, and helped to draft the manuscript. All authors
read and approved the final manuscript.

Received: 9 August 2010 Accepted: 12 November 2010
Published: 12 November 2010

References

1. Arabidopsis Genome Initiative: Analysis of the genome sequence of the
flowering plant Arabidopsis thaliana. Nature 2000, 408:796-815.

2. The International Brachypodium Initiative: Genome sequencing and
analysis of the model grass Brachypodium distachyon. Nature 2010,
463:763-768.

3. International Rice Sequencing Project: The map-based sequence of the
rice genome. Nature 2005, 436:793-800.

4. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ,
Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS,
Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM,
Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K,
Jackson SM, Gillam B, et al: B73 Maize Genome: Complexity, diversity, and
dynamics. Science 2009, 326:1112-1115.

5. Paterson AH, Bowers JE, Bruggmann R, Dubchak |, Grimwood J,

Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J,
Spannagi M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA,
Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP,
Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M,

Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R,
Peterson DG, Mehboob-ur-Rahman , Ware D, Westhoff P, Mayer KFX,
Messing J, Rokhsar DS: The Sorghum bicolour genome and the
diversification of grasses. Nature 2009, 457:551-556.

6. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL,
Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, et al: Genome
sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.

7. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P,
Ren'Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der
Vossen EAG, Wu' Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Yao, Ruan J,

Quian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan , Wu Z, Zhang J,
Cai Q, Bai Y, Zhao B, Han Y, Ying Li, Li X, Wang S, Shi Q, Liu S, Cho WK,
Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y,
Kang H, Man Li, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G,
Yang Z Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao Y, Fang X, Li G,
Fang Li, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S,
Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R,
Zhang B, Jiang S, Wang J, Du Y, Li S: The genome of the cucumber,
Cucumis sativus L. Nature Genetics 2009, 41:1275-1283.

8. Arumuganathan K, Earle ED: Nuclear DNA content of some important
plant species. Plant Mol Biol Rep 1991, 9:208-218.

9. Ezura H, Fukino N: Research tools for functional genomics in melon
(Cucumis melo L.): Current status and prospects. Plant Biotechnology 2009,
26:359-368.

10.  Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Picé B, Truniger V,
Gomez P, Deleu W, Caflo-Delgado A, Arus P, Nuez F, Garcia-Mas J,
Puigdomenech P, Aranda MA: MELOGEN: an EST database for melon
functional genomics. BMC Genomics 2007, 8:306.

11. The International Cucurbit Genomics Initiative (ICuGl). [http://www.icugi.
org].

12. van Leeuwen H, Monfort A, Zhang HB, Puigdoménech P: Identification and
characterization of a melon genomic region containing a resistance
gene cluster from a constructed BAC library. Microlinearity between
Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 2003, 51:703-718.

13. Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA: Melon bacterial
artificial chromosome (BAC) library construction using improved

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 14 of 15

methods and identification of clones linked to the locus conferring
resistance to melon Fusarium wilt (Fom-2). Genome 2001, 44:154-162.
Mascarell-Creus A, Cafizares J, Vilarrasa-Blasi J, Mora-Garcia S, Blanca J,
Gonzalez-Ibeas D, Saladié M, Roig C, Deleu W, Pico-Silvent B, Lopez-Bigas N,
Aranda MA, Garcia-Mas J, Nuez F, Puigdomenech P, Cafio-Delgado Al: An
oligo-based microarray offers novel transcriptomic approaches for the
analysis of pathogen resistance and fruit quality traits in melon (Cucumis
melo L.). BMC Genomics 2009, 10:467.

Ophir R, Eshed R, Harel-Beja R, Tzuri G, Portnoy V, Burger Y, Uliel S, Katzir N,
Sherman A: High-throughput marker discovery in melon using a self-
designed oligo microarray. BMC Genomics 2010, 11:269.

Tadmor Y, Katzir N, Meir A, Yaniv-Yaakov A, Sa'ar U, Baumkoler F, Lavee T,
Lewinsohn E, Schaffer A, Buerger J: Induced mutagenesis to augment the
natural genetic variability of melon (Cucumis melo L.). Israel J Plant Sci
2007, 55:159-169.

Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gomez-Guillamon ML,
Truniger V, Goémez P, Garcia-Mas J, Aranda MA, Bendahmane A: EcoTILLING
for the identification of alleclic variants of melon elF4E, a factor that
controls virus susceptibility. BMC Plant Biol 2007, 7:34.

Eduardo I, Ards P, Monforte AJ: Development of a genomic library of near
isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic
accession P1161375. Theor Appl Genet 2005, 112:139-148.

Wang YH, Thomas CE, Dean RA: A genetic map of melon (Cucumis melo
L.) based on amplified fragment length polymorphism (AFLP) markers.
Theor Appl Genet 1997, 95:791-798.

Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M,

Arus P, deVicente CM, Katzir N: Simple sequence repeats in Cucumis
mapping and map merging. Genome 2000, 43(6):963-974.

Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese AL, Arroyo M,
Gomez-Paniagua H, Arus P, de Vicente MC: Construction of a referente
map of melon. Genome 2001, 44:8336-845.

Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J,
Thompson G, Portnoy V, Katzir N, Perl-Treves R: Linkage map of Cucumis
melo including phenotypic traits and sequence-characterized genes.
Genome 2003, 46:761-773.

Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N,
Arus P, Monforte AJ: Simple-sequence repeat markers used in merging
linkage maps of melon (Cucumis melo L.). Theor Appl Genet 2005,
110:802-811.

Deleu W, Esteras C, Roig C, Gonzélez-To M, Fernandez-Silva |, Gonzélez-
Ibeas D, Blanca J, Aranda MA, Arts P, Nuez F, Monforte AJ, Picdé MB, Garcia-
Mas J: A set of EST-SNPs for map saturation and cultivar identification in
melon. BMC Plant Biology 2009, 9:90.

Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N,
Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H,
Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B,

Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y,
Schaffer AA, Katzir N: A genetic map of melon highly enriched with fruit
quality QTLs and EST markers, including sugar and carotenoid
metabolism genes. Theor Appl Genet 2010, 121(3):511-33.

Gonzalez V, Garcia-Mas J, Arus P, Puigdoménech P: Generation of a BAC-
based physical map of the melon genome. BMC Genomics 2010, 11:339.
Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B,
Puigdoménech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J,

Aranda MA, Bendahmane A: An elF4E allele confers resistance to an
uncapped and non-polyadenylated RNA virus in melon. Plant J 2006,
48:452-462.

Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA: The Fusarium wilt
resistance locus Fom-2 of melon contains a single resistance gene with
complex features. Plant Journal 2004, 39:283-297.

Boualem A, Mohamed F, Fernandez R, Troadec C, Martin A, Morin H,

Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C,
Bendahmane A: A conserved mutation in an ethylene biosynthesis
enzyme leads to andromonoecy in melons. Science 2008, 321:836-838.
Martin A, Troadez C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M,
Dogimont C, Bendahmane A: A transposon-induced epigenetic change
leads to sex determination in melon. Nature 2009, 461:1135-1138.
Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ,
Jordi Garcia-Mas: Candidate genes and QTLs for fruit ripening and
softening in melon. Theor App Genet 2008, 116(4):589-602.


http://www.ncbi.nlm.nih.gov/pubmed/11130711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11130711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20148030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20148030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16100779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16100779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19189423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19189423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20075913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20075913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19881527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19881527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767721?dopt=Abstract
http://www.icugi.org
http://www.icugi.org
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11341724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11341724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11341724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11341724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19821986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16208502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16208502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16208502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11195350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11195350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11681608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11681608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14608393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14608393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15700148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15700148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19604363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19604363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20401460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20401460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20401460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20509895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20509895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17026540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17026540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15255859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15255859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15255859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18687965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18687965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19847267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19847267?dopt=Abstract

Gonzalez et al. BMC Plant Biology 2010, 10:246
http://www.biomedcentral.com/1471-2229/10/246

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

45.

46.

47.

Ezura H, Owino WO: Melon, an alternative model plant for elucidating
fruit ripening. Plant Science 2008, 175:121-129.

van Leeuwen H, Monfort A, Zhang HB, Puigdoménech P: Identification and
characterization of a melon genomic region containing a resistance
gene cluster from a constructed BAC library. Microlinearity between
Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 2003, 51:703-718.
van Leeuwen H, Garcia-Mas J, Coca M, Puigdomenech P, Monfort A:
Analysis of the melon genome in regions encompassing TIR-NBS-LRR
resistance genes. Mol Gen Genom 2005, 273:240-251.

Deleu W, Gonzélez V, Monfort A, Bendahmane , Puigdomenech P, Ards P,
Garcia-Mas J: Structure of two melon regions reveals high microsynteny
with sequenced plant species. Mol Genet Genomics 2007, 278:611-622.
Varshney RK, Nayak SN, May GD, Jackson SA: Next-generation sequencing
technologies and their implications to crop genetics and breeding.
Trends in Biotechnology 2009, 27:522-530.

Rounsley S, Marri PR, Yu Y, He R, Sisneros N, Goicoechea JL, Lee SJ,
Angelova A, Kudrna D, Luo M, Affourtit J, Desany B, Knight J, Niazi F,
Egholm M, Wing RA: De novo next generation sequencing of plant
genomes. Rice 2009, 2:35-43.

Wicker T, Schlagenhauf , Graner A, Close TJ, Keller B, Stein N: 454
sequencing put to the test using the complex genome of barley. BMC
Genomics 2006, 7:275.

Quinn NL, Levenkova N, Chow W, Bouffard P, Boroevich KA, Knight JR,
Jarvie TP, Lubieniecki KP, Desany BA, Koop BF, Harkins TT, Davidson WS:
Assessing the feasibility of GS FLX pyrosequencing for sequencing the
Atlantic salmon genome. BMC Genomics 2008, 9:404.

Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D,
Petzold A, Felder M, Graner A, Scholz U, Mayer KFX, Platzer M, Stein N: De
novo 454 sequencing of barcoded BAC pools for comprehensive gene
survey and genome analysis in the complex genome of barley. BMC
Genomics 2009, 10:547.

Morales M, roig E, Monforte AJ, Ards P, Garcia-Mas J: Single-nucleotide
polymorphisms detected in expressed sequence tags of melon (Cucumis
melo L.). Genome 2004, 47(2):352-60.

Essafi A, Diaz-Pendon JA, Moriones E, Monforte AJ, Garcia-Mas J, Martin-
Hernandez AM: Dissection of the oligogenic resistance to Cucumber
mosaic virus in the melon accession PI161375. Theor Appl Genet 2009,
118(2):275-284.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE:
Rapid and accurate pyrosequencing of angiosperm plastid genomes.
BMC Plant Biol 2006, 6(1):17.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI,
Jarvie TP, Jirage KB, Kim J, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM,
Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP,
Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT,
Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A,
Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF,
Rothberg JM: Genome sequencing in microfabricated high-density
picolitre reactors. Nature 2005, 437:376-380.

Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D,
Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, lliev D, Coppola G,
Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M,
Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y,
Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F,
Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A,
Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S,
Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK,
Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R: A high quality draft
consensus sequence of the genome of a heterozygous grapevine
variety. PLoS One 2007, 2(12):e1326.

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S,
Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M,

Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S,
Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T,
Nakamichi T, Mori H, Tabata S: Genome structure of the legume, Lotus
japonicus. DNA Res 2008, 15(4):227-39.

Le QH, Melayah D, Bonnivard E, Petit M, Grandbastien MA: Distribution
dynamics of the Tnt1 retrotransposon in tobacco. Mol Genet Genomics
2007, 278(6):639-51.

48.

49.

50.

51

52.

53.

54.
55.
56.
57.

58.
59.

60.

Page 15 of 15

Gao X, Hou Y, Ebina H, Levin HL, Voytas DF: Chromodomains direct
integration of retrotransposons to heterochromatin. Genome Res 2008,
18:359-369.

Benjak A, Forneck A, Casacuberta JM: Genome-wide analysis of the “cut-
and-paste” transposons of grapevine. PLoS One 2008, 3(9):.e3107.
Phytozome: a tool for green plant comparative genomics. [http://www.
phytozome.net/].

Friedman AR, Baker BJ: The evolution of resistance genes in multi-protein
plant resistance systems. Curr Op Genet Dev 2007, 17:493-499.
Hernandez-Pinzon |, de Jesus E, Santiago N, Casacuberta JM: The frequent
transcripcional readthrough of the tobacco Tnt1 retrotransposon and its
possible implications for the control of resistance genes. J Mol Evol 2009,
68(3):269-78.

Estill JC, Bennetzen JL: The DAWGPAWS pipeline for the annotation of
genes and transposable elements in plant genomes. Plant Methods 2009,
5:8.

McCarthy EM, McDonald JF: LTR_STRUC: a novel search and identification
program for LTR retrotransposons. Bioinformatics 2003, 19(3):362-367.

Xu Z, Wang H: LTR_FINDER: an efficient tool for the prediction of full-
length LTR retrotransposons. Nucleic Acids Res 2007, 35:W265-268.
Kalyanaraman A, Aluru S: Efficient algorithms and software for detection
of full-length retrotransposons. J Bioinform Comput Biol 2006, 4(2):197-216.
Repbase. [http://www.girinst.org/repbase/index.html].

National Center for Biotechnology Information. [http.//www.ncbi.nlm.nih.gov/].
Lewis SE, Searle SMJ, Harris H, Gibson M, lyer V, Ricter J, Wiel C,
BAyraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews B, Prochnik SE,
Smith CD, Tupy! JL, Rubin GM, Misra S, Mungall CJ, Clamp ME: Apollo: a
sequence annotation editor. Genome Biology 2002, 3(12):RESEARCH0082.
Cannon SB, Sterck L, Rombauts S, Sato S, cheung F, Gouzy G, Wang X,
Mudge J, Vasdewani J, Scheix T, Spannagl M, Monaghan E, Nicholson C,
Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quetier F, Oldroyd GE,
Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y,
Young ND: Legume genome evolution viewed through the Medicago
truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 2006,
103:14959-14964.

doi:10.1186/1471-2229-10-246
Cite this article as: Gonzdlez et al.: Sequencing of 6.7 Mb of the melon
genome using a BAC pooling strategy. BMC Plant Biology 2010 10:246.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12678558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17665215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17665215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17067373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17067373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18755037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18755037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18825359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18825359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16934154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18511435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18511435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17786479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17786479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18769592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18769592?dopt=Abstract
http://www.phytozome.net/
http://www.phytozome.net/
http://www.ncbi.nlm.nih.gov/pubmed/17942300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19221683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19221683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19221683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19545381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19545381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12584121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12584121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17485477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17485477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819780?dopt=Abstract
http://www.girinst.org/repbase/index.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/pubmed/12537571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12537571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17003129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17003129?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Selection of BAC clones for pooling and sequencing
	Sequencing and assembly
	Sequence accuracy assessment
	Sequence annotation
	Transposon content of the sequenced BACs
	Analysis of microsynteny

	Conclusion
	Methods
	BAC library
	DNA extraction
	DNA sequencing
	Sequence assembly
	Sequence annotation
	Synteny analysis

	Note
	Acknowledgements
	Author details
	Authors' contributions
	References

