

This is a post-peer-reviewed, pre-copy-edited version of an article published in Sydowia. The final version is available online at: https://doi.org/10.12905/0380.sydowia75-2023-0181

Document downloaded from:

Exophiala atacamensis sp. nov. and *E. crusticola* from the Atacama Desert, northern Chile

3	
4	Hugo Madrid ¹ , Josepa Gené ² , Luis Quijada ³ , Taimy Cantillo ⁴ , Rodrigo Gacitúa ⁵ , Jorge Valdés ⁶ ,
5	Carolina Sánchez ⁷ , Francesc Xavier Prenafeta-Boldú ⁸ , Nalin Wijayawardene ^{9, 10} , Víctor Silva ¹¹ ,
6	& Patricio Godoy ¹²
7	
8	¹ Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique,
9	Av. Luis Emilio Recabarren 2477, Iquique, Chile
10	² Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Sant
11	Llorenç 21 (43201) Reus, Spain.
12	³ Department of Organismic and Evolutionary Biology, Farlow Reference Library and Herbarium of Cryptogamic
13	Botany, Harvard University Herbaria. 20 Divinity Avenue, Cambridge, Massachusetts 02138, USA
14	⁴ Departamento de Ciéncias Biológicas, Universidade Estadual de Feira de Santana, v. Transnordestina, S/N – Novo
15	Horizonte, 44036-900, Feira de Santana, BA, Brasil.
16	⁵ Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba
17	Santiago, Chile
18	⁶ Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, República 239, Universidad
19	Andrés Bello, Santiago, Chile
20	⁷ Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750,
21	Huechuraba, Santiago, Chile

22	⁸ IRTA – Institut de Recerca i Tecnologies Agroalimentàries, Torre Marimon, 08140 Caldes de Montbui, Spain
23	⁹ Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and
24	Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
25	¹⁰ Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue,
26	Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
27	¹¹ Escuela de Tecnología Médica, Universidad Santo Tomás, Sede Temuco, Manuel Rodríguez 060, Temuco
28	¹² Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Los Laureles s/n, Isla
29	Teja, Valdivia 5090000, Chile
30	Corresponding author, email: <u>hugo.madrid@gmail.com</u> , tel.: +56 9 42096025 (no fax available)
31	
32	Madrid H., Gené J., Quijada L., Cantillo T., Gacitúa R., Valdés J., Sánchez C., Prenafeta-Boldú F.,
33	Wijayawardene N., Silva V. & Godoy P. (2022) Exophiala atacamensis sp. nov. and E. crusticola from the Atacama
34	Desert, northern Chile – Sydowia XX: pp–pp.
35	
36	In the course of a taxonomic survey on hyphomycetes from the Atacama Desert, four strains of slow-
37	growing, cycloheximide-tolerant dematiaceous fungi were obtained from soil samples. These isolates presented a
38	blastic conidiogenous apparatus and yeast-like budding cells typical of the genus Exophiala. DNA sequence
39	analyses of the internal transcribed spacer region and partial large subunit ribosomal RNA gene revealed the
40	presence of a novel species, Exophiala atacamensis, and a new record, E. crusticola. Exophiala atacamensis is
41	phylogenetically distant from other members of Exophiala and is morphologically characterized by the production
42	of annellidic conidiogenous cells, aseptate conidia in slimy masses, yeast-like budding cells, and abundant brown,
43	meristematic, thick-walled bodies. This study reports E. crusticola for the first time in the Southern Hemisphere.
44	Key Words: Black yeasts, Chaetothyriales, Herpotrichiellaceae, phylogeny, taxonomy 1 new species.

45

46	The fungal genus Exophiala (Chaetothyriales, Eurotiomycetes) currently includes about 65
47	species. They are characterized by the production of yeast-like budding cells, dematiaceous
48	mycelium, annellidic conidiogenous cells and aseptate or transversely septate conidia in slimy
49	masses (de Hoog & Hermanides-Nijhoff 1977; Crous et al. 2018a, 2019). Identification of
50	species in this genus is difficult due to the existence of aggregates of genetically close,
51	morphologically similar taxa (de Hoog et al. 2006; Zeng et al. 2008; Maciá-Vicente et al. 2016).
52	In addition, Exophiala species often show a high degree of pleomorphism in culture and
53	sometimes produce phialophora-like, cladophialophora-like or meristematic synanamorphs
54	(Crous et al. 2007; Borman et al. 2017; de Hoog et al. 2020). Considering the high
55	morphological plasticity of Exophiala spp., DNA sequence analyses are required for reliable
56	species-level identification (Zeng et al. 2007; Li et al. 2011; Wen et al. 2016).
57	The type species of Exophiala, E. salmonis, and most members of this genus are allied to
58	the Herpotrichiellaceae (de Hoog et al. 2011, 2020). However, a few species belong in other
59	
	families of Chaetothyriales, such as Chaetothyriaceae and Trichomeriaceae (Gueidan et al. 2014;
60	families of Chaetothyriales, such as Chaetothyriaceae and Trichomeriaceae (Gueidan et al. 2014; Madrid et al. 2016). Within Herpotrichiellaceae, <i>Exophiala</i> spp. do not form a distinct clade, but
60 61	
	Madrid et al. 2016). Within Herpotrichiellaceae, <i>Exophiala</i> spp. do not form a distinct clade, but
61	Madrid et al. 2016). Within Herpotrichiellaceae, <i>Exophiala</i> spp. do not form a distinct clade, but they are often associated with other hyphomycete genera, such as <i>Fonsecaea</i> , <i>Phialophora</i> ,
61 62	Madrid et al. 2016). Within Herpotrichiellaceae, <i>Exophiala</i> spp. do not form a distinct clade, but they are often associated with other hyphomycete genera, such as <i>Fonsecaea</i> , <i>Phialophora</i> , <i>Rhinocladiella</i> , and <i>Veronaea</i> (Arzanlou et al. 2007; Crous et al. 2007; Réblová et al. 2013,
61 62 63	Madrid et al. 2016). Within Herpotrichiellaceae, <i>Exophiala</i> spp. do not form a distinct clade, but they are often associated with other hyphomycete genera, such as <i>Fonsecaea</i> , <i>Phialophora</i> , <i>Rhinocladiella</i> , and <i>Veronaea</i> (Arzanlou et al. 2007; Crous et al. 2007; Réblová et al. 2013, 2016). Exophiala-like asexual morphs have been linked to certain species of the ascomycete

type species, *Capronia sexdecimspora*, are available (Untereiner et al. 2011). Therefore, it is
difficult to apply unitary nomenclature in this generic complex and a certain degree of polyphyly
is currently accepted in *Capronia* and its anamorphs (Untereiner & Naveau 1999; Gueidan et al.
2014).

71 *Exophiala* species occur in diverse habitats including soil, living or dead plant material, 72 water, river sediments, rocks and humid surfaces in indoor spaces (Papendorf 1969; de Hoog & Hermanides-Nijhoff 1977; Matos et al. 2002; Crous et al. 2007; Dögen et al. 2013). They are 73 74 also associated with numerous animal hosts, where they may occur as mere colonizers or as opportunistic pathogens causing a broad spectrum of superficial and invasive, often life-75 76 threatening infections (de Hoog et al. 2003, 2005, 2011; Revankar & Sutton 2010; Sevedmousavi 77 et al. 2013; Woo et al. 2013). Furthermore, numerous *Exophiala* species occur in habitats with scarce water and nutrients (Ruibal et al. 2008; Hallmann et al. 2013), high concentrations of 78 79 heavy metals or toxic aromatic hydrocarbons (Prenafeta-Boldú et al. 2001; Seyedmousavi et al. 2011), wide temperature fluctuations and intense exposure to UV radiation (Bates et al. 2006; 80 Isola et al. 2013). Some of these extremotolerant species are currently under study as potential 81 bioremediation agents for pollutants such as arsenic, and gasoline-derived volatile compounds 82 (Prenafeta-Boldú et al. 2006; Badali et al. 2011; Seyedmousavi et al. 2011). 83

In spite of the clinical relevance and biotechnological potential of *Exophiala*, no thorough assessment of the biodiversity of this genus has been carried out in Chile. Only scarce publications exist and they report only five species, i.e. *E. exophialae*, *E. jeanselmei*, *E. lecaniicorni*, *E. pisciphila* and *E. salmonis* (Piontelli et al. 1984; Uijthof et al. 1997; Silva et al. 2004). Considering the vast geographical territory of this country, its diversity of climates and rich flora

89	and fauna, we suspect that many more species remain to be found. In the present study, we
90	addressed the phylogenetic placement and species identities of four Exophiala strains obtained
91	from desert soil in northern Chile.
92	
93	Materials and methods
94	
95	Sample collection and isolation
96	Soil samples were collected in areas of the Atacama Desert near Calama (altitude 2400
97	m.a.s.l.). Samples were placed into polyethylene bags and kept at room temperature until
98	processed. Approximately 1 g of each sample was diluted in 9 mL of sterile water and a 500 μL
99	aliquot of the mix was spread on the surface of plates with malt extract agar (MEA; Merck,
100	Germany) supplemented with cycloheximide at a final concentration of 0.1 mg/mL.
101	Cycloheximide was added in order to inhibit the growth of fast-growing molds, while favouring
102	the isolation of tolerant organisms, such as chaetothyrialean fungi (Madrid et al. 2016). The
103	plates were incubated at 25 °C in the dark and observed weekly. Pure cultures of soilborne
104	Exophiala species were obtained by transferring fragments of slow-growing, strongly melanized
105	colonies growing on the primary cultures to MEA plates, with the aid of a sterile dissection
106	needle. MEA plates were incubated at 25 $^{\circ}$ C for 14 days in the dark and then DNA extraction
107	and subculturing for morphological studies were performed. Strains were preserved in the
108	Chilean Type Culture Collection (CCCT), Universidad de la Frontera, Temuco, Chile and in the
109	working collection of the main author (HM).

110

111 Phenotypic characterization

Colony morphology was studied on MEA and oatmeal agar (OA; Difco, USA) after 21
days at 25 °C in the dark. The ability to grow at 37 °C was also tested on both media.
Microscopic morphology was studied from slide cultures on MEA at 25 °C after 14 days.
Photomicrographs were obtained from lactophenol cotton blue mounts using a Zeiss Axioskop 2
Plus light microscope.

117

118 DNA sequence analyses

DNA was extracted directly from colonies on MEA using the PrepMan Ultra sample 119 preparation reagent (Applied Biosystems, Foster City, California) following the manufacturer's 120 121 instructions. The internal transcribed spacer region (ITS) and a fragment of the large subunit rRNA gene (LSU) were sequenced with the primer pairs ITS5/ITS4 and LR0R/LR5 as described 122 by White et al. (1990) and Vilgalys and Hester (1990), respectively. Purification and Sanger 123 sequencing of PCR products were carried out at Macrogen USA (Rockville, Maryland). 124 Consensus sequences were obtained from the complementary sequences of each strain using the 125 SeqTrace software (Stucky 2012). BLAST searches (Altschul et al. 1990) were performed with 126 the ITS and LSU sequences of the strains studied in order to compare them with those of species 127 deposited in GenBank. For molecular species-level identification, percent identities of only the 128 129 ITS locus were considered, because it offers a higher resolution than the relatively conserved LSU gene. LSU sequences were obtained as a complementary barcode useful at the level of 130

132	of the ITS sequence of a studied strain to its closest match was \geq 99%, they were considered
133	conspecific (Zeng et al. 2007; Madrid et al. 2016).
134	An ITS-based phylogeny reconstruction (Fig.1) was performed to show the relationships
135	between Chilean isolates obtained in this study and other Exophiala spp. currently represented in
136	GenBank. The type species of Exophiala, E. salmonis is a member of Herpotrichiellaceae, and
137	therefore the ingroup only included species belonging in that family. Excluded species include <i>E</i> .
138	encephalarti and E. placitae, which belong in Trichomeriaceae, and E. eucalyptorum, which
139	resides in Chaetothyriaceae. ITS sequences were aligned with the MUSCLE webserver
140	(http://www.ebi.ac.uk/Tools/msa/muscle/, Edgar 2004) and then adjusted manually with a text
141	editor. After excluding ambiguous regions, an alignment of 403 bp. was obtained. Phylogeny
142	reconstructions were performed with the maximum likelihood method with MEGA X (Kumar et
143	al. 2018), using the best DNA substitution models chosen by that software. The statistical
144	support for the groupings was assessed by bootstrap analysis of 1000 replicates. The DNA
145	sequences and alignments generated during this study were deposited in GenBank (Table 1) and
146	TreeBASE (study accession URL:
147	http://purl.org/phylo/treebase/phylows/study/TB2:S25910), respectively.
148	
149	Results and discussion
150	

genus, family and higher taxonomic ranks (Iwen et al. 2002; Schoch et al. 2012). If the identity

151 *Molecular study*

131

152	BLAST searches allowed us to identify three out of the four studied strains to species level.
153	Isolates CCCT 19.109, CCCT 19.110, and CCCT 19.111 showed 99.82–100% sequence
154	identities to the ITS region of the ex-type strain of Exophiala crusticola, CBS 119970 (GenBank
155	AM048755), and clustered with that strain in the ITS tree (Fig. 1). On the other hand, all the
156	closest matches of strain CCCT 19.114 showed relatively low ITS percent identities. These
157	included Exophiala sp. IFM 64156 (GenBank accession LC317596, 96.60% identical), Veronaea
158	botryosa CBS 126027, CBS 127264 and CBS 127265 (GenBank MH863891, MH864499, and
159	MH864500, respectively, 91.31–91.43% identical), and Exophiala dermatitidis CBS 125841
160	(GenBank MH863897, 89% identical). In the ITS tree (Fig. 1) CCCT 19.114 grouped with
161	Exophiala sp. IFM 64156 with 85% bootstrap support, but a considerable genetic distance
162	separated the strains, clearly indicating that they represent different taxa.
163	

164 Taxonomy

165 Strain CCCT 19.114 shows morphological features which do not match any of the 166 described species of *Exophiala*. Its unique phylogenetic position and considerable genetic 167 distance from other members of this genus support the proposal of a novel species.

168 *Exophiala atacamensis* Madrid, Gené, Quijada, Cantillo & R. Gacitúa sp. nov. – Figs. 1, 2.

169 MycoBank no.: MB835461

170 Diagnosis. – Distinguished from other *Exophiala* species by the combination of thick-walled meristematic bodies,
171 and an inability to grow a 40 °C.

172	Holotypus CHILE, El Loa Province, Atacama Desert, near Calama, isolated from soil, Sep 2015, H. Madrid (SGO
173	168422 holotype, a dried culture on MEA; ex-type cultures CCCT 19.114 and HM 132).

174

Description. – Colonies after 21 days at 25 °C attaining 13–15 mm on MEA, and 14–17 175 mm on OA, velvety, on both media mid grey to mid olivaceous grey, flat to convex, with an 176 entire to lobulated, olivaceous black margin, sometimes umbonate with a glabrous, olivaceous 177 black, moist center; reverse olivaceous black. No growth observed at 37 °C. Vegetative hyphae 178 179 septate, branched, light olivaceous to mid olivaceous brown, smooth and thin-walled, $1-3 \mu m$ 180 wide, with moniliform segments showing swollen cells up to 6 µm wide and abundant intercalary, lateral and terminal chlamydospore-like cells commonly evolving into mid 181 182 olivaceous brown, subglobose meristematic bodies up to 13 µm wide. Conidiophores micronematous to semimacronematous, often reduced to conidiogenous cells, pale olivaceous to 183 pale olivaceous brown. Conidiogenous cells blastic, terminal or intercalary, mostly flask-shaped 184 or subcylindrical to fusiform, but sometimes also subglobose to ellipsoid, $5-18 \times 2-5 \,\mu m$ often 185 with a narrow, (sub)apical or lateral, subcylindrical annellated extension $1-3.5 \times 1-1.5 \,\mu\text{m}$. 186 Conidia mostly guttuliform to clavate, aseptate, light olivaceous to light olivaceous brown, 187 smooth-walled, $2-7 \times 1.5-4 \mu m$. Yeast cells subglobose to subcylindrical, light olivaceous to 188 light olivaceous brown, smooth-walled, $3-6 \times 2.5-3.5 \,\mu\text{m}$, often forming short chains. Sexual 189 190 morph not observed.

191

192 Etymology. – The name refers to the place where this fungus was collected, the Atacama193 Desert in northern Chile.

194 Habitat. – In desert soil

195	Notes. – Exophiala atacamensis is superficially similar to two Exophiala species
196	producing meristematic bodies in culture, i.e. E. dermatitidis and E. phaeomuriformis. These
197	species, however, are able to grow at 40 $^{\circ}$ C (de Hoog et al. 2020) and are phylogenetically
198	distant from E. atacamensis (Fig. 1). Furthermore, E. dermatitidis sometimes produces
199	phialophora-like phialides with conspicuous collarettes (de Hoog et al. 1994) which were not
200	observed in E. atacamensis, and the thallus of E. phaeomuriformis lacks hyphae (Matos et al.
201	2003). Meristematic bodies are also produced by certain Exophiala species causing
202	chromoblastomycosis in humans, such as E. spinifera and Exophiala aff. pisciphila. However,
203	these structures were reported only in infected tissues, not in culture (Padhye et al. 1996, Garzón
204	et al. 2018) and both fungi are phylogenetically distant from <i>E. atacamensis</i> (Fig. 1).

- 205
- 206

Discussion

207 This is the first study to provide conclusive, DNA sequence-based identifications of Chilean *Exophiala* strains, with the proposal of a novel species, *E. atacamensis*, and a new 208 record, E. crusticola. The closest known relative of E. atacamensis is Exophiala sp. IFM 64156, 209 a clinical strain isolated from scalp, preserved at the Medical Research Center of Chiba 210 University (Chiba, Japan). In the phylogenetic study (Fig. 1), both fungi formed a clade with 211 212 significant statistical support, but branch lengths clearly indicate that they represent different species. Molecular data suggest that IFM 64156 might represent another novel species, however, 213 further studies would be necessary to propose it formally. The ITS sequence of that strain was 214 215 submitted directly to GenBank in 2017 and heretofore, it has not been included in any published

study. Considering that the genus *Exophiala* includes opportunistic pathogens affecting a wide
spectrum of animal hosts (de Hoog et al. 2011, Seyedmousavi et al. 2013), it would be
interesting to perform experimental pathogenicity studies with *E. atacamensis*. Infections in
humans, nevertheless, are unlikely considering the inability of this fungus to grow at 37°C (de
Hoog et al. 2020).

221 *Exophiala crusticola* was originally described from biological soil crusts in arid areas of 222 the USA (Bates et al. 2006). Biological soil crusts are microbial communities formed by algae, 223 bacteria, bryophytes and fungi which occur in arid environments with scarce vascular plant 224 cover. In such places, these organisms form a consolidated crust which protect soil against 225 erosion (Warren et al. 2019, 2021). Like other filamentous fungi, E. crusticola was hypothesized 226 to contribute to the development of these formations by entwining soil particles with its hyphae and gluing them with extracellular polysaccharides. In such communities, this fungus was 227 supposed to occur as a saprobe subsisting on organic compounds released by cyanobacteria by 228 229 leaching due to continued cycles of wetting and drying (Bates et al. 2006). After its original description, E. crusticola has been reported only three times, i.e. from creosoted railway sleepers 230 in Turkey (Gümral et al. 2014), from gypsum soil in semi-arid steppes in Spain (Muriel et al. 231 2022), and from sites contaminated with aromatic hydrocarbons in Italy (Isola et al. 2021). This 232 study presents the first report of this species from the southern hemisphere. 233

Heretofore, five *Exophiala* species had been reported from Chile i.e., *Exophiala exophialae*, *E. jeanselmei*, *E. lecanii-corni*, *E. pisciphila* and *E. salmonis*. These species,
reported from miscellaneous clinical and environmental sources, were originally identified
relying entirely on phenotypic features (Piontelli et al. 1984, Uijthof et al. 1997, Silva et al.

2004). Unfortunately, only two strains from those reports were preserved, E. pisciphila CBS 238 217.79 and E. salmonis 665.76, isolated from soil and Araucaria wood, respectively. ITS 239 sequence analyses carried out by Uijthof et al. (1997) concluded that Chilean strains are 240 genetically very different from the respective ex-type strains, both of which are pathogenic to 241 fish (Carmichael 1966, McGinnis & Ajello 1974). Unfortunately, the ITS sequences of CBS 242 217.79 and CBS 665.76 are not available in GenBank for comparison. An unidentified Exophiala 243 244 species was isolated from decaying trunks of the cactus *Eulychnia iquiquensis* in northern Chile (Santiago et al. 2018) but, apparently, no strains were preserved and no DNA sequence data is 245 available. An additional '*Exophiala* sp.' strain, 15LV1, was isolated by Pulshen et al. (2015) 246 247 from volcanic soil collected in the Atacama Desert. That strain shows 99.59% and 99.37% identity to the ITS sequences of the ex-type strains of *Phaeoannellomyces elegans* and *Exophiala* 248 sideris, CBS 122.95 and CBS 128771, respectively. The former taxon is the type species of 249 250 Phaeoannellomyces, a poorly known clinically relevant genus implicated in different forms of phaeohyphomycosis (Engleberg et al. 1987). This genus is characterized by the production of 251 dematiaceous yeast cells and blastic, mainly annellidic conidiogenous cells (McGinnis et al. 252 1985). These characteristics and its phylogenetic affinities to the Herpotrichiellaceae suggest that 253 *Phaeoannellomyces* might be a putative synonym of *Exophiala*. Further studies are required to 254 255 test this hypothesis and to determine whether E. sideris and P. elegans are synonyms. In such case, it would be necessary to reallocate *P. elegans* to *Exophiala* as '*E. elegans*' and this might 256 be the appropriate name for strain 15LV1. 257

Considering the vast geographical area of Chile, its diversity of climates, flora and fauna,
high level of endemism, and scarcity of taxonomic studies including *Exophiala* species (Piontelli

260	et al. 1984, Silva et al. 2004, Pulshen et al. 2015, Santiago et al. 2018), probably many more
261	members of this genus remain to be discovered in this country.
262	
263	Acknowledgements
264	
265	Hugo Madrid was funded by Comisión Nacional Científica y Tecnológica (CONICYT),
266	Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Chile, Project N°
267	1140562. Luis Quijada thanks the support of the Farlow Fellowship, the Department of
268	Organismic and Evolutionary Biology at Harvard University and the Harvard University
269	Herbaria.
270	
271	References
272	
273	Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990) Basic local alignment search
274	tool. Journal of Molecular Biology 215: 403–410.
275	Arzanlou M., Groenewald J.Z., Gams W., Braun U., Shin H.D., Crous P.W. (2007) Phylogenetic
276	and morphotaxonomic revision of Ramichloridium and allied genera. Studies in Mycology

58: 57–93.

278	Attili-Angelis D., Duarte A.P.M., Pagnocca F.C., Nagamoto N.S., de Vries M., Stielow J.B., de
279	Hoog G.S. (2014) Novel Phialophora species from leaf-cutting ants (tribe Attini). Fungal
280	<i>Diversity</i> 65: 65–75.
281	Badali H., Prenafeta-Boldú F.X., Guarro J., Klaassen C.H., Meis J.F., de Hoog G.S. (2011)
282	Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in
283	the bioremediation of volatile aromatic hydrocarbons. <i>Fungal Biology</i> 115: 1019–1029.
284	Bates S.T., Reddy G.S., Garcia-Pichel F. (2006) Exophiala crusticola anam. nov. (affinity
285	Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United
286	States. International Journal of Systematic and Evolutionary Microbiology 56: 2697–2702.
287	Borman A.M., Fraser M., Szekely A., Larcombe D.E., Johnson E.M. (2017) Rapid identification
288	of clinically relavant members of the genus Exophiala by matrix-assisted laser desorption
289	ionization-time of flight mass spectrometry and description of two novel species,
290	Exophiala campbellii and Exophiala lavatrina. Journal of Clinical Microbiology 55:
291	1162–1176.
292	Carmichael J.W. (1966) Cerebral mycetoma of trout due to a <i>Phialophora</i> -like fungus.
293	<i>Sabouraudia</i> 5: 120–123.
294	Crous P.W., Groenewald J.Z. (2011) Why everlastings don't last. Persoonia 26: 70-84.
295	Crous P.W., Groenewald J.Z., Shivas R.G., Edwards J., Seifert K.A., Alfenas A.C., et al. (2011)
296	Fungal planet description sheets: 69–91. Persoonia 26: 108–156.
297	Crous P.W., Schumacher R.K., Akulov A., Thangavel R., Hernández-Restrepo M., Carnegie
298	A.J., Cheewangkoon R., Wingfield M.J., Summerell B.A., Quaedvlieg W., Coutinho T.A.,

299	Roux J., Wood A.R., Giraldo A., Groenewald J.Z. (2019). New and interesting fungi. 2.
300	Fungal Systematics and Evolution 3: 57–134.
301	Crous P.W., Schubert K., Braun U., de Hoog G.S., Hocking A.D., Shin H.D., Groenewald J.Z.
302	(2007) Opportunistic, human-pathogenic species in the Herpotrichiellaceae are
303	phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Studies
304	in Mycology 58: 185–217.
305	Crous P.W., Schumacher R.K., Wingfield M.J., Akulov A., Denman S., Roux J., Braun U.,
306	Burgess T.I., Carnegie A.J., Váczy K.Z., Guatimosim E., Schwartsburd P.B., Barreto
307	R.W., Hernández-Restrepo M., Lombard L., Groenewald J.Z. (2018a) New and interesting
308	fungi. 1. Fungal Systematics and Evolution 1: 169–215.
309	Crous P.W., Wingfield M.J., Burgess T.I., Hardy G.E.S.J., Gené J., Guarro J., et al. (2018b)
310	Fungal Planet description sheets: 716–784. Persoonia 40: 240–393.
311	Crous P.W., Wingfield M.J., Guarro J., Cheewangkoon R., van der Bank M., Swart W.J., et al.
312	(2013) Fungal planet description sheets: 154–213. Persoonia 31: 188–296.
313	de Hoog G.S., Guarro J., Gené J., Ahmed S., Al-Hatmi A.M.S., Figueras M.J., Vitale R.G.
314	(2020) Atlas of Clinical Fungi. 4th edn. Westerdijk Institute/Universitat Rovira I Virgili,
315	Hilversum/Reus.
316	de Hoog G.S., Hermanides-Nijhof E.J. (1977) The black yeasts and allied Hyphomycetes.
317	Studies in Mycology 15: 1–222.

318	de Hoog G.S., Matos T., Sudhadham M., Luijsterburg K.F., Haase G. (2005) Intestinal
319	prevalence of the neurotropic black yeast Exophiala (Wangiella) dermatitidis in healthy
320	and impaired individuals. Mycoses 48: 142–145.
321	de Hoog G.S., Takeo K., Yoshida S., Götlich E., Nishimura K., Miyaji M. (1994)
322	Pleoanamorphic life cycle of Exophiala (Wangiella) dermatitidis. Antonie van
323	Leeuwenhoek 65: 143–153.
324	de Hoog G.S., Vicente V.A., Caligiorne R.B., Kantarcioglu S., Tintelnot K., Gerrits van den
325	Ende A.H.G., Haase G. (2003) Species diversity and polymorphism in the Exophiala
326	spinifera clade containing opportunistic black yeast-like fungi. Journal of Clinical
327	<i>Microbiology</i> 41: 4767–4778.
328	de Hoog G.S., Vicente V.A., Najafzadeh M.J., Harrak M.J., Badali H., Seyedmousavi S. (2011)
329	Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27: 46-
330	72.
331	de Hoog G.S., Zalar P., Urzi C., Sterflinger K. (1999) Relationships of dothideaceous black
332	yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison.
333	Studies in Mycology 43: 31–37.
334	de Hoog G.S., Zeng J.S., Harrak M.J., Sutton D.A. (2006). Exophiala xenobiotica sp. nov., an
335	opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie van
336	Leewenhoek 90: 257–268.

337	Döğen A., Kaplan E., Oksüz Z., Serin M.S., Ilkit M., de Hoog G.S. (2013) Dishwashers are a
338	major source of human opportunistic yeast-like fungi in indoor environments in Mersin,
339	Turkey. <i>Medical Mycology</i> 51: 493–498.
340	Edgar R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
341	throughput. Nucleic Acids Research 32: 1792–1797.
342	Engleberg N.C., Johnson J., Bluestein J., Madden K., Rinaldi M.G. (1987) Phaeohyphomycotic
343	cyst caused by a recently described species, Phaeoannellomyces elegans. Journal of
344	Clinical Microbiology 25: 605–608.
345	Garzón L.M., Rueda L.J., Celis A.M., Cárdenas M., Guevara-Suarez M. (2018) Exophiala
346	psycrophila: A new agent of chromoblastomycosis. Medical Mycology Case Reports 23:
347	31–33.
348	Gueidan C., Aptroot A., da Silva Cáceres M.E., Badali H., Stenroos S. (2014) A reappraisal of
349	orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes,
350	Ascomycota). Mycological Progress 13: 1027–1039.
351	Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., İlkit M., de Hoog G.S. (2014) Black yeast
351 352	
	Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., Ilkit M., de Hoog G.S. (2014) Black yeast
352	Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., Ilkit M., de Hoog G.S. (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions.
352 353	 Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., Ilkit M., de Hoog G.S. (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. <i>Microbial Ecology</i> 68: 699–707.
352 353 354	 Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., İlkit M., de Hoog G.S. (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. <i>Microbial Ecology</i> 68: 699–707. Hallmann C., Wedekind W., Hause-Reitner D., Hoppert M. (2013) Cryptogam covers on
352 353 354 355	 Gümral R., Tümgör A., Saraçlı M.A., Yıldıran Ş.T., Ilkit M., de Hoog G.S. (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. <i>Microbial Ecology</i> 68: 699–707. Hallmann C., Wedekind W., Hause-Reitner D., Hoppert M. (2013) Cryptogam covers on sepulchral monuments and re-colonization of a marble surface after cleaning.

357	Irinyi L., Serena C., Garcia-Hermoso D., Arabatzis M., Desnos-Ollivier M., Vu D., et al. (2015)
358	International society of human and animal mycology (ISHAM)-ITS reference DNA
359	barcoding database — the quality controlled standard tool for routine identification of
360	human and animal pathogenic fungi. Medical Mycology 53: 313–337.
361	Isola D., Zucconi L., Onofri S., Caneva G., de Hoog G.S., Selbmann L. (2013). Extremotolerant
362	rock inhabiting black fungi from Italian monumental sites. <i>Fungal Diversity</i> 76: 75–96.
363	Isola D., Scano A., Orrù G., Prenafeta-Boldú F.X., Zucconi L. (2021) Hydrocarbon-
364	contaminated sites: is there something more than Exophiala xenobiotica? New insights into
365	black fungal diversity using the long cold incubation method. <i>Journal of Fungi</i> 7: 817.
366	Iwen P.C., Hinrichs S.H., Rupp M.E. (2002) Utilization of the internal transcribed spacer regions
367	as molecular targets to detect and identify human pathogens. Medical Mycology 40: 87-
368	109.
369	Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018) MEGA X: Molecular Evolutionary
370	Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:
371	1547–1549.
372	Li D.M., Li R.Y., de Hoog G.S., Sudhadham M., Wang D.L. (2011) Fatal Exophiala infections
373	in China, with a report of seven cases. <i>Mycoses</i> 54: e136–142.
374	Li Y., Xiao J., de Hoog G.S., Wang X., Wan Z., Yu J., Liu W., Li R. (2017) Biodiversity and
375	human pathogenicity of Phialophora verrucosa and relatives in Chaetothyriales. Persoonia
376	38: 1–19.

377	Maciá-Vicente J.G., Glynou K., Piepenbring M. (2016) A new species of Exophiala associated
378	with roots. <i>Mycological Progress</i> 15: 18.
379	Madrid H., Hernández-Restrepo M., Gené J., Cano J., Guarro J., Silva V. (2016) New and
380	interesting chaetothyrialean fungi from Spain. Mycological Progress 15: 1179–1201.
381	Matos T., de Hoog G.S., de Boer A.G., de Crom I., Haase G. (2002) High prevalence of the
382	neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities.
383	<i>Mycoses</i> 45: 373–377.
384	Matos T., Haase G., Gerrits van den Ende A.H., de Hoog G.S. (2003) Molecular diversity of
385	oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on
386	E. dermatitidis. Antonie van Leeuwenhoek 83: 293–303.
387	McGinnis M.R., Ajello L. (1974) A new species of <i>Exophiala</i> isolated from channel catfish.
388	<i>Mycologia</i> 66: 518–520.
389	McGinnis M.R., Schell W.A., Carson J. (1985) Phaeoannellomyces and the
390	Phaeococcomycetaceae, new dematiaceous blastomycete taxa. Sabouraudia 23: 179–188.
391	Müller E., Petrini O., Fisher P.J., Samuels G.J., Rossman A.Y. (1987) Taxonomy and anamorphs
392	of the Herpotrichiellaceae with notes on generic synonymy. Transactions of the British
393	Mycological Society 88: 63–74.
394	Muriel S., Olariaga I., Prieto M. (2022) Gypsum content influences culturable soil fungal
395	communities in semi-arid steppes from central Spain. Journal of Arid Environments 202:
396	104756.

Nascimento M.M.F., Vicente V.A., Bittencourt J.V.M., Gelinski J.M.L., Prenafeta-Boldú F.X.,
Romero-Güiza M., Fornari G., Gomes R.R., Santos G.D., van den Ende A.H.G., Azevedo
C.D.M.P.S., de Hoog G.S. (2017) Diversity of opportunistic black fungi on babassu
coconut shells, a rich source of esters and hydrocarbons. Fungal Biology 121: 488–500.
Padhye A.A., Hampton A.A., Hampton M.T., Hutton N.W., Prevost-Smith E., Davis M.S. (1996)
Chromoblastomycosis caused by Exophiala spinifera. Clinical Infectious Diseases 22:
331–335.
Papendorf M.C. (1969) New South African soil fungi. Transactions of the British Mycological
<i>Society</i> 52: 483–489.
Piontelli E., Toro M.A., Salamanca L., Díaz M.C. (1984) Algunas dematiáceas de interés médico
aisladas de material clínico y otros ambientes. <i>Boletín Micológico</i> 1: 213–224.
Prenafeta-Boldú F.X., Kuhn A., Luykx D.M., Anke H., van Groenenstijn J.W., de Bont J.A.M.
(2001) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons
as their sole carbon and energy source. <i>Mycological Research</i> 105: 477–484.
Prenafeta-Boldú F.X., Summerbell R.C., de Hoog G.S. (2006) Fungi growing on aromatic
hydrocarbons: biotechnology's unexpected encounter with biohazard? FEMS Microbiology
<i>Reviews</i> 30: 109–130.
Pulshen A.A., Rodrigues F., Duarte R.T.D., Araujo G.G., Santiago I.F., Paulino-Lima I.G., Rosa
C.A., Kato M.J., Pellizari V.H., Galante D. (2015) UV-resistant yeasts isolated from a
high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology.

418	Réblová M., Untereiner W.A., Réblová K. (2013) Novel evolutionary lineages revealed in the
419	Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of its
420	secondary structure. PLoS ONE 28: e63547.
421	Réblová M., Hubka V., Thureborn O., Lundberg J., Sallstedt T., Wedin M., Ivarsson M. (2016)
422	From the tunnels into de treetops: new lineages of black yeasts from biofilm in the
423	Stockholm Metro system and their relatives among ant-associated fungi in the
424	Chaetothyriales. PLoS ONE 11: e0163396.
425	Revankar S.G., Sutton D.A. (2010) Melanized fungi in human disease. Clinical Microbiology
426	<i>Reviews</i> 23: 884–928.
427	Santiago I.F., Gonçalves V.N., Gómez-Silva B., Galetovic A., Rosa L.H. (2018) Fungal diversity
428	in the Atacama desert. Antonie van Leeuwenhoek 111: 1345–1360.
429	Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., and
430	Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS)
431	region as a universal DNA barcode marker for Fungi. Proceedings of the National
432	Academy of Sciences of the United States of America 109: 6241–6246.
433	Seyedmousavi S., Badali H., Chlebicki A., Zhao J., Prenafeta-Boldú F.X., de Hoog G.S. (2011)
434	Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl
435	benzenes and arsenic. Fungal Biology 115: 1030–1037.
436	Seyedmousavi S., Guillot J., de Hoog G.S. (2013) Phaeohyphomycoses, emerging opportunistic
437	diseases in animals. Clinical Microbiology Reviews 26: 19–35.

438	Silva V., Díaz M.C., Febré N., Chilean Invasive Fungal Infections Group (2004) Invasive fungal
439	infections in Chile: a multicenter study of fungal prevalence and susceptibility during a 1-
440	year period. <i>Medical Mycology</i> 42: 333–339.
441	Stucky B.J. (2012) SeqTrace: A graphical tool for rapidly processing DNA sequencing
442	chromatograms. Journal of Biomolecular Techniques 23: 90-93.
443	Tibpromma S., Hyde K.D., Jeewon R., Maharachchikumbura S.S.N., Liu J.K., Bhat D.J., et al.
444	(2017) Fungal diversity notes: 491–602: taxonomic and phylogenetic contributions to
445	fungal taxa. <i>Fungal Diversity</i> 83: 1–261.
446	Uijthof J.M.J., Figge M.J., de Hoog G.S. (1997) Molecular and physiological investigations of
447	Exophiala species described from fish. Systematic and Applied Microbiology 20: 585–594.
448 449	Untereiner W.A. (1995) Fruiting studies in species of <i>Capronia</i> (Herpotrichiellaceae). <i>Antonie van Leeuwenhoek</i> 68: 3–17.
450	Untereiner W.A. (1997) Taxonomy of selected members of the ascomycete genus Capronia with
451	notes on anamorph-teleomorph connections. Mycologia 89: 120–131.
452	Untereiner W.A. (2000) Capronia and its anamorphs: exploring the value of morphological and
453	molecular characters in the systematics of the Herpotrichiellaceae. Studies in Mycology
454	45: 141–149.
455	Untereiner W.A., Gueidan C., Orr MJ., Diederich P. (2011) The phylogenetic position of the
456	lichenicolous ascomycete Capronia peltigerae. Fungal Diversity 49: 225–233.

457	Untereiner W.A., Naveau F.A. (1999) Molecular systematics of the Herpotrichiellaceae with an
458	assessment of the phylogenetic positions of Exophiala dermatitidis and Phialophora
459	americana. Mycologia 91: 67–83.
460	Vilgalys R., Hester M. (1990) Rapid genetic identification and mapping of enzymatically
461	amplified ribosomal DNA from several species of Cryptococcus. Journal of Bacteriology
462	172: 4238–4246.
463	Vitale R.G., de Hoog G.S. (2002) Molecular diversity, new species and antifungal
464	susceptibilities in the Exophiala spinifera clade. Medical Mycology 40: 545–556.
465	Vu D., Groenewald M., de Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A.,
466	Groenewald J.Z., Cardinali G., Houbraken J., Boekhout T., Crous P.W., Robert V.,
467	Verkleij G.J. (2019) Large-scale generation and analysis of filamentous fungal DNA
468	barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and
469	higher taxon delimitation. Studies in Mycology 92: 135–154.
470	Warren S.D., St. Clair L.L., Stark L.R., Lewis L.A., Pombubpa N., Kurbessoian T., Stajich J.E.,
471	Aanderud Z.T. (2019) Reproduction and dispersal of biological soil crust organisms.
472	Frontiers in Ecology and Evolution 7: 344.
473	Warren S.D., Rosentreter R., Pietrasiak N. (2021) Biological soil crusts of the Great Plains: a
474	review. Rangeland Ecology and Management 78: 213–219.
475	Wen Y.M., Rajendran R.K., Lin Y.F., Kirschner R., Hu S. (2016) Onychomycosis associated

476 with *Exophiala oligosperma* in Taiwan. *Mycopathologia* **181**: 83–88.

477	White T.J., Bruns T.D., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal
478	ribosomal genes for phylogenetics. In: PCR protocols: a guide to methods and applications
479	(eds. Gelfand M., Sninsky J.I., White T.J.), Academic Press, New York: 315-322.
480	Woo P.C., Ngan A.H., Tsang C.C., Ling I.W., Chan J.F., Leung S.Y., Yuen K.Y., Lau S.K.
481	(2013) Clinical spectrum of <i>Exophiala</i> infections and a novel <i>Exophiala</i> species, <i>E</i> .
482	hongkongensis. Journal of Clinical Microbiology 51: 260–267.
483	Yong L.K., Wiederhold N.P., Sutton D.A., Sandoval-Denis M., Lindner J.R., Fan H., Sanders C.,
484	Guarro J. (2015) Morphological and molecular characterization of Exophiala polymorpha
485	sp. nov., isolated from sporotrichoid lymphocutaneous lesions in a patient with myasthenia
486	gravis. Journal of Clinical Microbiology 53: 2816–2822.
487	Zeng J.S., de Hoog G.S. (2008) Exophiala spinifera and its allies: diagnostics from morphology
488	to DNA barcoding. <i>Medical Mycology</i> 46: 193–208.
489	Zeng J.S., Sutton D.A., Fothergill A.W., Rinaldi M.G., Harrak M.J., de Hoog G.S. (2007)
490	Spectrum of clinically relevant Exophiala species in the United States. Journal of Clinical
491	<i>Microbiology</i> 45: 3713–3720.
492	Zhang C., Sirijovski N., Adler L., Ferrari B.C. (2019) Exophiala macquarensis sp. nov., a cold
493	adapted black yeast recovered from a hydrocarbon contaminated sub-Antarctic soil. Fungal
494	<i>Biology</i> 123: 151–158.
495	
496	Fig. 1 Maximum likelihood tree constructed with the ITS sequences of <i>Exophiala</i> spp. isolated
497	during this study and related reference strains. Branch lengths are proportional to distance.

498	Bootstrap values \geq 70% are shown near the internodes. <i>Knufia tsunedae</i> was used as outgroup.
499	Isolates obtained during this study appear in bold type. ^T , ex-type strain. GenBank accession
500	numbers of ITS sequences are given in parenthesis after strain numbers.

- 501 Fig. 2 *Exophiala atacamensis* (CCCT 19.114). a Colony on MEA after 21 d at 24°C. b-f
- 502 Conidiophores, conidiogenous cells and conidia. **g** Moniliform hypha. **h** Chlamydospore-like
- cells evolving into meristematic bodies. **i** Yeast cells. Scale bars **b** 10 μ m **c–i** 5 μ m.

Species name	Isolate no.	Country and source/host	Genbank acc	cession no
			ITS	LSU
Exophiala abietophila	CBS 145038 ^T	Norway, bark of Abies alba	MK442581	
Exophiala alcalophila	CBS 520.82 ^T	Japan, soil	JF747041	
Exophiala angulospora	CBS 482.92 ^T	Japan, water from drinking well	JF747046	
Exophiala aquamarina	CBS 119918 ^T	USA, skin of Phycodures eques (leafy seadragon)	JF747054	
Exophiala asiatica	CBS 122847 ^T	China, tonsil tissue of a human patient with disseminated infection	EU910265	
Exophiala atacamensis, sp. nov.	CCCT 19.114 ^T (= HM 132)	Chile, desert soil	MT137540	MT137544
Exophiala attenuata	CBS 101540 ^T	Colombia, soil	AF549446	
Exophiala bergeri	CBS 353.52 ^T	Canada, skin of human patient with chromoblastomycosis	EF551462	
Exophiala bonariae	CBS 139957 ^T	Italy, surface of marble funerary monument	JX681046	
Exophiala brunnea	CBS 587.66 ^T	South Africa, leaf litter of Acacia karroo	JF747062	
Exophiala cancerae	CBS 120420 ^T	Brazil, diseased mangrove crab (Ucides cordatus)	JF747064	

References

Crous et al. (2019)

de Hoog et al. (2011)

de Hoog et al. (2011)

de Hoog et al. (2011)

Li et al. (2011)

This study

Vitale & de Hoog (2002)

Zeng & de Hoog (2008)

Isola et al. (2013)

de Hoog et al. (2011)

de Hoog et al. (2011)

Table 1 cont.

Exophiala capensis	CBS 128771 ^T	Soutlh Africa, leaf of Phaenocoma prolifera	JF499841	
Exophiala castellanii	CBS 158.58 ^T	Sri Lanka, human	KF928458	
Exophiala crusticola	CBS 119970 ^T	USA, biological soil crust	AM048755	
	CCCT 19.109 (= HM 136)	Chile, desert soil	MT137541	MT137545
	CCCT 19.110 (=HM 135)	Chile, desert soil	MT137543	MT137547
	CCCT 19.111 (= HM 134)	Chile, desert soil	MT137542	MT137546
Exophiala dermatitidis	CBS 207.35 ^T	Japan, human	AF050269	
Exophiala dopicola	CBS 537.94 ^T	USA, litter of Pinus taeda	MH862483	
Exophiala equina	CBS 119.23 ^T	Italy, subcutaneous infection in a horse	JF747094	
Exophiala eucalypticola	CBS 143412 ^T	Australia, Eucalyptus obliqua leaf litter	MH107891	
Exophiala exophialae	CBS 668.76 ^T	Uruguay, straw in an armadillo burrow	AY156973	
Exophiala halophila	CBS 121512 ^T	USA, axillary skin, human	JF747108	
Exophiala heteromorpha	CBS 232.33 ^T	Sweden, wood pulp	AY857524	
Exophiala hongkongensis	CBS 131511 ^T	China, big toe nail infection, human	JN625231	

Crous & Groenewald (2011)
Attili-Angelis et al. (2014)
Bates et al. (2006)
This study
This study
This study
Untereiner & Naveau (1999)
Vu et al. (2019)
de Hoog et al. (2011)
Crous et al. (2018)
Vitale & de Hoog (2002)
de Hoog et al. (2011)
Prenafeta-Boldú et al. (2006)
Woo et al. (2013)

Table 1	l cont.
---------	---------

Tuble T colle.			
Exophiala italica	MFLUCC 16-0245 ^T	Italy, dead branch of Cytisus scoparius	KY496744
Exophiala jeanselmei	CBS 664.76	N/A, human	AF050271
Exophiala lacus	CBS 117497 ^T	The Netherlands, lake water	JF747110
Exophiala lecanii-corni	CBS 123.33 ^T	N/A, Lecanium corni	AY857528
Exophiala lignicola	CBS 144622 ^T	Ukraine, decorticated trunk of Quercus sp.	MK442582
Exophiala macquariensis	CBS 144232 ^T	Australia, soil polluted with aromatic hydrocarbons	MF619956
Exophiala mansonii	CBS 101.67 ^T	Sweden, Populus tremula	AF050247
Exophiala mesophila	CBS 402.95 ^T	Germany, silicone seal in shower room	MH862536
Exophiala moniliae	CBS 520.76 ^T	Russia, twig of Quercus sp.	KF881967
Exophiala nidícola	CBS 138589 ^T	Spain, nest of a bird	MG701055
Exophiala nigra	CBS 546.82	N/A, N/A	EF551550
Exophiala nishimurae	CBS 101538 ^T	Venezuela, culture contaminant	AY163560
Exophiala oligosperma	CBS 265.49 ^T	France, honey	KP132067

Tibpromma et al. (2017)

Untereiner & Naveau (1999)

de Hoog et al. (2011)

Prenafeta-Boldú et al. (2006)

Crous et al. (2019)

Zhang et al. (2019)

Untereiner & Naveau (1999)

Vu et al. (2019)

Li et al. (2017)

Crous et al. (2018b)

Zeng & de Hoog (2008)

de Hoog et al. (2003)

Irinyi et al. (2015)

Table 1 cont.			
Exophiala opportunistica	CBS 109811 ^T	Germany, drinking water at waterstation	JF747123
Exophiala palmae	CMRP 1196 ^T	Brazil, decaying shell of babassu (Attalea speciosa) coconut	KY680434
Exophiala phaeomuriformis	CBS 131.88 ^T	N/A, cutaneous phaeohyphomycosis in a human patient	AJ244259
Exophiala pisciphila	CBS 537.73 ^T	USA, systemic mycosis in channel catfish (Ictalurus punctatus)	AF050272
Exophiala polymorpha	CBS 138920 ^T	USA, subcutaneous lesion in a human patient	KP070763
Exophiala psychrophila	CBS 191.87 ^T	Norway, Atlantic salmon (Salmo salar) in fish farm	JF747135
Exophiala radicis	CBS 140402 ^T	Germany, root of pennycress (Thlaspi perfoliatum)	KT099204
Exophiala salmonis	CBS 157.67 ^T	Canada, brain infection of cutthroat trout (Oncorhynchus clarkii)	AF050274
Exophiala sideris	CBS 121818 ^T	The Netherlands, berry of Sorbus aucuparia	HQ452311
Exophiala sp.	GMG_C6	United Kingdom, coastal soil	FJ439580
Exophiala sp.	IFM 64156	Japan, scalp	LC317596
Exophiala spinifera	CBS 899.68 ^T	USA, nasal granuloma in a human patient	AY156976

de Hoog et al. (2011)

Nascimento et al. (2017)

de Hoog et al. (1999)

Untereiner & Naveau (1999)

Yong et al. (2015)

de Hoog et al. (2011)

Maciá-Vicente et al. (2016)

Untereiner & Naveau (1999)

Seyedmousavi et al. (2011)

Unpublished (direct submission)

Unpublished (direct submission)

Vitale & de Hoog (2002)

Table 1 cont.			
Exophiala tremulae	UAMH 10998 ^T	Canada, roots of Populus tremuloides	FJ665274
Exophiala xenobiotica	CBS 118157 ^T	Venezuela, oil sludge	DQ182587
Knufia tsunedae	FMR 10621 ^T	Spain, soil	HG003669
Veronaea botryosa	CBS 126027	Brazil, leaf of babassu palm	MH863891
	CBS 127264	Mexico, disseminated phaeohyphomycosis in a human patient	MH864499
	CBS 127265	Mexico, face tissue from a human patient	MH864500
	CBS 254.57 ^T	Italy, sansa olive slag	JF747143
Veronaea compacta	CBS 268.75 ^T	South Africa, soil	EU041819
Veronaea japonica	CBS 776.83 ^T	Japan, dead bamboo culm	EU041818

Strains and DNA sequences generated in this study appear in bold type. CBS, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CCCT, Chilean Type Culture Collection, Universidad de la Frontera, Temuco, Chile; FMR, Faculty of Medicine collection, Reus, Spain; CMRP, Microbiological Collections of the Paraná Network, Federal University of Paraná, Curitiba, Brazil; GMG, Geoff M. Gadd, Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MFLUCC, Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; UAMH, University of Alberta Microfungus Collection and Herbarium, Devonian Botanic Garden, Edmonton, Canada.

Crous et al. (2011)

de Hoog et al. (2006)

Crous et al. (2013)

Vu et al. (2019)

Vu et al. (2019)

Vu et al. (2019)

de Hoog et al. (2011)

Arzanlou et al. (2007)

Arzanlou et al. (2007)