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In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramus-
cular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to
identify the link between muscle gene expression and its FA composition. In an
(Iberian � Duroc) � Duroc backcrossed pig population, we identified modules of co-expressed genes,
and correlation analyses were performed for each of them versus the phenotypes, finding four relevant
modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated
FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3
ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways
related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor sig-
nalling pathway and FA elongation. The two other relevant modules were positively correlated with
PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an
over-representation of pathways related with fatty and amino acid degradation, and with oxidative phos-
phorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes
within each module. The first module had 52 genes with 87 connections, and the most connected genes
were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism.
The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most con-
nected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13
was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its
most connected genes were related with mitochondrial pathways. Overall, this work successfully identi-
fied relevant muscle gene networks and modules linked with FA composition, providing further insights
on how the physiology of the pigs influences FA composition.
� 2024 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Pig meat quality is influenced by the fatty acid composition in
intramuscular fat, which, in turn, is determined by different factors
such as the diet, the animal age or the breed. Aiming to deepen the
knowledge of the links between muscle gene expression and fatty
acid composition, our study identified groups of genes that play a
role in controlling fatty acid metabolism. Groups with positive
relationships with saturated and monounsaturated fatty acids
had genes involved in the synthesis of fatty acids and groups with
positive relationships with polyunsaturated fatty acids had genes
involved in the degradation of fatty acids.

Introduction

Pig is a main livestock species, being pork one of the most pro-
duced meats worldwide only surpassed by poultry, with 1.35 bil-
lion swine heads produced in 2019 and 110 million tonnes of
meat (FAOSTAT, 2022). This high productivity is sustained by the
efficiency of the commercial pig breeds, which are strongly
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selected based on their prolificity, growth capacity, and muscle and
fat deposition, among other traits (Latorre et al., 2008). Nowadays,
other traits are also added to the selective breeding schemes, as
consumers demand healthier meats, but also keeping their good
organoleptic qualities such as flavour or juiciness (Aaslyng et al.,
2007), being determinant of the level of intramuscular fat
(Fernandez et al., 1999; van Laack et al., 2001). Lipid metabolism
plays an important role in energy production and storage among
other processes (Bergen and Mersmann, 2005), and it is a key fac-
tor in pork production, as it affects the composition of the fat and,
therefore, consumer acceptance of the meat (Fernandez et al.,
1999). In addition, pig is used in biomedicine as a model species
for obesity and cardiovascular diseases, therefore, increasing the
importance of deepening the knowledge on its lipid metabolism
(Spurlock and Gabler, 2008).

Iberian pig is a Spanish rustic breed, less efficient than the
highly efficient lean breeds, but also endowed with a high�fat
deposition, both intramuscular and subcutaneous (Nieto et al.,
2019). Iberian pork fatty acid (FA) profile, when compared with
leaner breeds, has higher content in monounsaturated FAs
(MUFAs), but also in saturated FAs (SFAs) (Serra et al., 1998).
Monounsaturated FAs are involved in meat quality and taste, but
SFAs have been associated with obesity and cardiovascular dis-
eases in humans (Briggs et al., 2017; Livingstone et al., 2022). Ibe-
rian sows can be crossed with Duroc boars to enhance the growth
performance while keeping good organoleptic properties of the
meat (Ayuso et al., 2016). This crossbreed and the backcross
(Duroc � Iberian) � Iberian are also used in the dry-cured products
industry, producing more affordable pork while keeping an Iberian
background (Ministerio de Agricultura, Alimentación y Medio
Ambiente, 2014).

Recent studies have been performed by our research group to
assess relationships between the genes and the FA composition
in muscle (Valdés-Hernández et al., 2023) using different
approaches. This analysis found candidate genes for intramuscular
FA profile. However, these results can be further explored using co-
expression networks that highlight the relationships between the
genes.

The analysis of gene expression data is a challenging task, and
extensive efforts have been made to provide a large range of meth-
ods to extract relevant interaction networks from transcriptome
data. Among these approaches, the Weighted Gene Co-expression
Network Analysis (WGCNA) detects co-expressed genes associated
with complex target traits (Horvath and Dong, 2008; Langfelder
and Horvath, 2008; Zhang and Horvath, 2005). Weighted Gene
Co-expression Network Analysis has been used to investigate co-
expression modules associated with obesity (Kogelman et al.,
2014) or feed efficiency in pigs (Ramayo-Caldas et al., 2018). How-
ever, WGCNA and other network inference approaches lack the
ability to distinguish between direct and indirect relations among
the expressed genes in a statistically sound way. A feasible alterna-
tive that can overcome this limitation is the combination of the
WGCNA approach with graphical Gaussian models (GGMs)
(Schäfer and Strimmer, 2005). Under this statistical framework,
gene regulatory networks are modelled as sparse graphs where
genes are nodes, i.e. Gaussian random variables, and edges
between nodes are the relationships between genes, i.e. condi-
tional dependencies between random variables. Graphical Gaus-
sian models distinguish direct dependencies (true biological
genes regulation network) from spurious correlations (undirected
relationships between genes). Furthermore, this approach has been
already used in plants (Ma et al., 2007), on other omics (Benedetti
et al., 2017) or in cancer research (Svoboda et al., 2018).

Overall, WGCNA and GGM are complementary approaches to
unravel the complexity of biological mechanisms (Le Novère,
2015) and in this article, we used a two-step approach similar to
2

L. Zhang et al. (2018) to apply them to an RNA-Seq dataset that tar-
gets the pig muscle transcriptome in animals with intramuscular
FA composition.

The aim of this work was to study the relationships between the
muscle gene expression and the FA profile, in order to identify genes
thatmay be influencing the FA composition inmuscle and therefore,
themeat quality. For that purpose,wefirst used theWGCNAmethod
to identify muscle co-expressed gene modules associated with FA
composition. Subsequently, in each module, we used the statistical
framework of GGMs to infer regulatory networks.

Material and methods

Animal material

The 129 pigs used in this study belonged to an experimental
backcrossed population (BC1_DU), which was obtained by mating
five Iberian � Duroc F1 boars with 22 Duroc sows. The population
is fully described in Crespo-Piazuelo et al. (2020). In brief, the back-
crossed animals (59 females and 70 males) were raised in intensive
conditions and fed a cereal-based diet. Pigs were slaughtered at an
age of 190 ± 15 days in a commercial abattoir, where samples from
the Longissimus dorsi muscle were collected and snap-frozen in liq-
uid nitrogen. Muscle samples were later stored at �80 �C until fur-
ther use.

The FA profile was determined by a gas chromatography proto-
col for methyl esters, as explained in Crespo-Piazuelo et al. (2020).
Then, the results of the FA composition were represented as rela-
tive abundances in percentages (Table 1). In addition, other indices
such as the sum of SFAs, MUFAs and polyunsaturated FAs (PUFAs),
and the ratio between the omega-6 and omega-3 (n-6/n-3) PUFA
were also calculated.

Transcriptome sequencing and estimation of gene expression

The RiboPureTM Isolation kit forHighQuality Total RNA (Ambion;
Austin, TX, USA)was used, following themanufacturer’s recommen-
dations, to isolate the RNA from the Longissimus dorsi muscle of the
129 animals. A NanoDrop ND-1000 spectrophotometer (NanoDrop
products; Wilmington, DE, USA) was used to quantify the RNA,
and its integrity was checked with an Agilent Bioanalyzer-2100
equipment (Agilent Technologies, Inc.; Santa Clara, CA, USA). The
CNAG institute (Centre Nacional d’Anàlisi Genòmica; Barcelona,
Spain) performed the library preparation and sequencing. The anal-
ysiswas run in an IlluminaHiSeq3000/4000machine (Illumina, Inc.;
San Diego, CA, USA) using the paired-end library preparedwith Tru-
Seq Stranded mRNA kit also from Illumina. Full details are available
in Crespo-Piazuelo et al. (2020).

Bioinformatic analyses for RNA alignment and quantification
can be found in Valdés-Hernández et al. (2023). In brief, initial
quality control was performed with FastQC v0.11.9 (Andrews,
2010). STAR v2.7.9a (Dobin et al., 2013) was used to map the reads
against the Sscrofa11.1 pig reference genome and gene expression
was assessed with RSEM v1.2.28 (B. Li and Dewey, 2011). In sum-
mary, a mean of 45.09 million of 2 � 75 bp paired-end reads per
sample was obtained, resulting in an average of 90.06% of uniquely
mapped reads. The raw count matrix consisted of 19 263 genes.

Weighted gene co-expression network analysis and gene enrichment
analysis

The FA composition and ratios indicated in Table 1 were used in
the WGCNA analysis. The list of expressed genes obtained from the
RNA-Seq expression data was filtered, keeping 3 538 genes related
to energy metabolism. The filter was created using a list of gene
functional annotations based on gene ontology and pathway terms,



Table 1
Mean relative abundance (%) and SD values of fatty acid (FA) composition in the
Longissimus dorsi muscle (LD) of the 129 BC1_DU pigs.

Phenotypes Name Mean SD

Saturated FA
SFA_LD Total SFA1 39.98 3.107
C140_LD Myristic acid 1.27 0.231
C160_LD Palmitic acid 23.90 1.663
C180_LD Stearic acid 14.35 1.727

Monounsaturated FA
MUFA_LD Total MUFA2 43.37 6.233
C161n7_LD Palmitoleic acid 2.79 0.524
C181n9_LD Oleic acid 35.83 5.800
C181n7_LD Vaccenic acid 3.83 0.303
C201n9_LD Gondoic acid 0.73 0.166

Polyunsaturated FA
PUFA_LD Total PUFA3 16.16 8.306
C182n6_LD Linoleic acid 12.25 5.962
C183n3_LD a-linolenic acid 0.40 0.131
C202n6_LD Eicosadienoic acid 0.43 0.122
C203n6_LD Dihomo-c-linolenic acid 0.46 0.294
C203n3_LD Eicosatrienoic acid 0.18 0.098
C204n6_LD Arachidonic acid 2.62 1.983

W6W3_LD Ratio n-6/n-3 26.60 8.159

1 SFA: saturated fatty acid.
2 MUFA: monounsaturated fatty acid.
3 PUFA: polyunsaturated fatty acid.
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which included the following gene ontology databases: Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPath-
ways, STRING-db, AmiGO 2, MGI, and BioSystems from NCBI. This
list was manually curated by our research group, as further
explained in Valdés-Hernández et al. (2023). The list with the path-
ways and the source can be found in Supplementary Table S1. The
counts were corrected by sex and batch, normalised using the
Fig. 1. MDS (Multidimensional Scaling) plot of the distribution of the expressed genes
modules assigned for each gene.

3

counts per million calculation and log-transformed with the edgeR
package v3.38.4 (Robinson et al., 2010). A complete list of the lipid-
related genes can be found in Supplementary Table S2. To identify
co-expressed and highly interconnected genes associated with the
intramuscular profile of 17 FAs (Table 1), the WGCNA package
v.1.72–1 (Langfelder and Horvath, 2008) was used in R as follows:

(1) The network construction as well as the identification of the
modules of co-expressed genes was done on gene expression
data. The soft-thresholding power as a function of the scale-
free topology index was defined at seven, which represent a
power-law model of R2 = 0.88.

(2) Pearson’s correlation between the module eigengene and
the FA phenotype information was estimated. The eigengene
is defined as the first principal component of a given module
and can be considered a representative of the gene expres-
sion profiles in a module (Langfelder and Horvath, 2008). A
module was chosen for downstream analysis if it presented
module-trait relationship � |0.1| and P-value � 0.05 in at
least six of the analysed traits.

Gene function classification and pathway enrichment analyses
were performed using the ClueGO Cytoscape plug-in (Bindea
et al., 2009). The cut-off for considering a significant over-
representation was established with a P-value � 0.05 after Ben-
jamini and Hochberg multiple-test correction (Benjamini and
Hochberg, 1995).

Network inference using graphical Gaussian model

Within each module of genes, we inferred a network of ‘‘direct”
regulation between genes (i.e., conditional dependencies) using the
in the Longissimus dorsi muscle of the 129 BC1_DU pigs. The colours represent the
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graphical Gaussian model in high dimension (Friedman et al.,
2008). Analyses were implemented in R by using the glasso
(Friedman et al., 2008) and huge (Zhao et al., 2012) packages.

For consistent estimation of the network, it was inferred 30
times on 30 subsets from the original dataset (sampling with
replacement). Based on the Bolasso variable selection algorithm
(Bach, 2008), only edges appearing all the times in the inferred net-
works were kept in the final model. Inferred networks were subse-
quently uploaded to Cytoscape program for visualisation.
Results

Co-expressed gene modules and correlation with fatty acid traits

The co-variation between gene-expression and FA phenotypic
information was estimated by using the WGCNA approach. First,
genes were clustered according to their connectivity, resulting in
12 modules. Supplementary Table S3 provides the complete list
of genes with their module membership. The WGCNA procedure
assigned a specific colour to each gene-module that will henceforth
be used to refer to each module, as seen in the summary plot of
Fig. 1, which also shows the colour assigned to each significant
module. Fig. 2 pictures the correlation coefficient between the
eigengene values of these modules and the 17 FA-related pheno-
types. From the 12 modules, we only kept for further analyses
the ones that had six or more significant correlations (P-
value� 0.05) of their eigengene values with the phenotypes, which
resulted in four relevant modules (Magenta, Yellow, Green and
Brown), as shown in Fig. 2. SFA and MUFA followed similar rela-
tionships with the module eigengene values, while PUFA showed
opposite correlation patterns (Fig. 2). This is an expected result tak-
ing into consideration the negative phenotypic correlations
between the different FA. As Fig. 3 shows, SFA and MUFA have pos-
itive correlations between them and negative with PUFA.

The eigengene values of Magenta and Yellowmodules showed a
similar correlation trend, which was opposite to the patterns
observed in the Green and Brown modules. Magenta and Yellow
modules included 57 and 221 genes, respectively, which resulted
to be positively correlated with palmitoleic (C16:1n-7), oleic
(C18:1n-9) and the sum of the MUFA in Magenta module, and with
stearic acid (C18:0) in Yellow module, but both modules were neg-
atively correlated with linoleic acid (C18:2n-6), arachidonic
(C20:4n-6), the ratio n-6/n-3 and the sum of the PUFA. The
Magenta module was also negatively correlated with other PUFA
such as a-linolenic acid (C18:3n-3), eicosadienoic acid (C20:2n-
6), eicosatrienoic acid (C20:3n-3) and dihomo-c-linolenic acid
(C20:3n-6). Meanwhile, the Green and Brown modules included
174 and 234 co-expressed genes, respectively; both of them fol-
lowing an opposite relationship than Magenta and Yellow mod-
ules, being positively correlated with C18:2n-6, C20:4n-6,
C20:3n-6, C20:2n-6, ratio n-6/n-3 or PUFA, but negatively corre-
lated with C14:0, C18:1n-9 and MUFA.
Fig. 2. Relationships between the four significant modules identified in WGCNA
and the FA phenotypes in the Longissimus dorsi muscle of the BC1_DU pigs. Red
colour points out the positive correlations, while blue represents the negative ones.
The P-value of the correlation is shown between parentheses. LD=Longissimus dorsi;
FA=fatty acid; SFA=saturated fatty acid; MUFA=monounsaturated fatty acid;
PUFA=polyunsaturated fatty acid; W6W3 = omega-6/omega-3 ratio; WGCNA=-
Weighted Gene Co-expression Network Analysis; ME=Module of Expression.
Biological processes and pathways enriched within gene modules

The gene-enrichment analysis indicated that the genes gathered
in the four modules strongly associated with FA are involved in a
wide variety of physiological and biological events (Supplementary
Table S4). Among significantly enriched pathways, it is worth high-
lighting the pathways listed in Table 2.

To be noted, module gene-enrichment analysis agreed with the
observed module and FA correlation patterns. As previously com-
mented, modules Magenta and Yellow were positively correlated
with MUFA and SFA, showing an over-representation of pathways
related to Biosynthesis of unsaturated fatty acids (KEGG:01040),
4

Peroxisome Proliferator-Activated Receptor (PPAR) signalling
pathway (KEGG:03320) and Fatty acid elongation (KEGG:00062).
Meanwhile, genes belonging to Green and the Brown modules



Fig. 3. Phenotypic correlations between the analysed FAs in Longissimus dorsi muscle of the 129 BC1_DU pigs. LD=Longissimus dorsi; FA=fatty acid; SFA=saturated fatty acid;
MUFA=monounsaturated fatty acid; PUFA=polyunsaturated fatty acid; W6W3 = omega-6/omega-3 ratio.
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were negatively correlated with those FAs, but positively linked to
PUFA, showing over-representation of pathways associated with
Fatty acid (KEGG:00071) and amino acid degradation
(KEGG:00280; KEGG:00380; KEGG:00620; KEGG:00310) or Oxida-
tive phosphorylation (KEGG:00190).

Network inference in each module

For each of the four WGCNA modules associated with FA com-
position, we performed network inference by using the graphical
Gaussian model. Fig. 4 shows the connections between the most
connected genes and their neighbours from the Magenta module;
the remaining networks of the significant modules (Yellow, Green
and Brown) are available in Supplementary Figure S1. The Magenta
network had 52 nodes with 87 edges. The most connected gene
was ADIPOQ with 10 neighbours; TRARG1 and ELOVL6 with eight
neighbours; FABP4 with seven neighbours, and GYS2, PLIN1, CIDEC,
and AK4 with six. The Yellow network inferred using the graphical
Gaussian model had 196 nodes with 263 edges. The most con-
nected genes were FN1 and MAP3K11 with eight neighbours, and
PLAU, CSF1R and EHD2 with seven neighbours. The Green network
had 161 nodes with 351 edges. The most connected gene was
ATG13 with 11 neighbours. MEF2C, GOT1, IRS2, NCEH1 and MAP2K3
had nine neighbours, and PBX1, ENSSSCG00000002433 (PSMC1),
ILVBL, GPAT4 and EIF4A1 had eight neighbours. The Brown network
had 224 and 655 edges. The most connected gene was
ENSSSCG00000034019 (ATP5MF) with 16 neighbours, whereas
COX6A2, ATP5F1C, ATP5PB, COX7B and ENSSSCG00000002907
(COX6B) had 13 neighbours.
5

Discussion

Co-expression networks enable the clustering of different genes
that have similar behaviours. This is especially useful when work-
ing with a high number of data such as tables of expressed genes
analysed in a whole-transcriptome approach, but it is still often
needed to define subsets of genes of particular interest. In our
study, these groups were defined as modules of co-expressed
genes in muscle that showed correlations with FA composition.
Among the four significant modules identified, Magenta and Yel-
low modules showed positive correlations with SFA and MUFA,
while Green and Brown modules had positive correlations with
PUFA and its omega-6/omega-3 ratio, which is in agreement with
previous results of our research group (Valdés-Hernández et al.,
2023). Out of the four modules, the Magenta module clustered
the least number of co-expressed genes, while the Brown module
had the highest number of co-expressed genes. The most con-
nected genes in the Magenta module were related to the insulin
and FA biosynthesis pathways and also aligned with the significant
phenotypic correlations found in this module, which showed pos-
itive results with three of the MUFAs and their sum. On the other
hand, the most connected genes of the Brown module were related
to the mitochondrial FA oxidation. In this case, the phenotypic cor-
relations showed positive results with four of the PUFAs, their sum,
and the omega-6/omega-3 ratio.

In the following sections, we provide an in-depth analysis of the
interaction network defining the gene-gene connections within
each of the four modules.



Table 2
Over-represented pathways for each significant module of co-expressed genes in the
Longissimus dorsi muscle of the 129 BC1_DU pigs. Only the pathways with a corrected
(by Benjamini and Hochberg) P-value of � 0.05 are considered.

Over-represented pathways1 Corrected P-
value

Magenta module
Biosynthesis of unsaturated fatty acids (KEGG2:01040) 0.0013
PPAR3 signalling pathway (KEGG:03320) 0.0013
Fatty acid elongation (KEGG:00062) 0.0076
Cholesterol metabolism (KEGG:04979) 0.0294

Yellow module
Chemokine signalling pathway (KEGG:04062) 0.0000
Platelet activation (KEGG:04611) 0.0000
Glutamatergic synapse (KEGG:04724) 0.0009
Calcium signalling pathway (KEGG:04020) 0.0013
Phospholipase D signalling pathway (KEGG:04072) 0.0037
PI3K-Akt signalling pathway (KEGG:04151) 0.0041
Regulation of lipolysis in adipocytes (KEGG:04923) 0.0298

Green module
Adipocytokine signalling pathway (KEGG:04920) 0.0225

Brown module
Oxidative phosphorylation (KEGG:00190) 0.0000
Citrate cycle (TCA cycle) (KEGG:00020) 0.0000
Fatty acid degradation (KEGG:00071) 0.0001

Amino acid degradation
Valine, leucine and isoleucine degradation

(KEGG:00280)
0.0004

Tryptophan metabolism (KEGG:00380) 0.0004
Pyruvate metabolism (KEGG:00620) 0.0044
Lysine degradation (KEGG:00310) 0.0058

1 Numbers between parentheses are the KEGG entry for the pathway.
2 KEGG: Kyoto Encyclopedia of Genes and Genomes.
3 PPAR: Peroxisome Proliferator-Activated Receptor.

C. Sebastià, M. Gallopin, Y. Ramayo-Caldas et al. Animal 18 (2024) 101259
Insulin pathway and fatty acid biosynthesis (Magenta module)

In the Magenta module, we found ADIPOQ (adiponectin) as the
most connected gene. ADIPOQ is an adipokine involved in meat
quality, and this module was found positively correlated with the
palmitoleic acid (C16:1n-7). Besides, the palmitoleic acid has been
described as a lipokine and has been related with metabolism
homeostasis (Frigolet and Gutiérrez-Aguilar, 2017). In addition to
being mainly synthesised by the adipocytes, ADIPOQ is involved
in FA oxidation and inhibits lipogenesis, but it also regulates insu-
lin sensitivity (Kadowaki and Yamauchi, 2005) and has been asso-
ciated with average daily weight gain in pigs (Dall’Olio et al., 2009).
The insulin sensitivity regulation is thought to be performed also
by TRARG1 (trafficking regulator of GLUT4-1) (Duan et al., 2018),
which was found in this module with a positive correlation with
ADIPOQ. ADIPOQ is associated with one of the enriched pathways
of this module, the PPAR (peroxisome proliferator-activated recep-
tor) signalling pathway, which has associated with other highly
connected genes such as GYS2 (glycogen synthase 2) and PPARG
(peroxisome proliferator�activated receptor gamma). GYS2 plays
a role in obesity through abnormal carbohydrate and lipid metabo-
lism (Morton et al., 2011). PPARs are regulators of the lipid meta-
bolism gene expression (Varga et al., 2011), and PPARG can be
found, in addition to adipose cells, in other tissues such as breast
and colon (Walczak and Tontonoz, 2002). The PPARG gene is a
key regulator of adipogenesis (Tontonoz et al., 1995), but also plays
a role in insulin sensitivity and glucose homeostasis (Walczak and
Tontonoz, 2002). It interacts with other of the highly neighbouring
genes of this module, such as FABP4 (fatty acid binding protein 4),
whose encoded protein promotes insulin resistance (Garin-
Shkolnik et al., 2014), and CIDEC (cell death inducing DFFA�like
effector c), which has been found directly activated by PPARG in
liver (Matsusue et al., 2008) and up-regulated by PPARG2 in bovine
adipose tissue (Zhou et al., 2018).
6

PLIN1 (perilipin 1), which belongs to the perilipin family, is
found in the lipid droplets of the adipocytes and is involved in
intramuscular fat deposition (Gol et al., 2016; Kimmel et al.,
2010). Our research group found in a previous work (Valdés-
Hernández et al., 2023) that this gene is positively correlated to
palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9) and total MUFA
content, and negatively correlated to the PUFAs eicosadienoic acid
(C20:2n-6) and a-linolenic acid (C18:3n-3). In addition, other stud-
ies found that PLIN1 interacts with CIDEC to promote the formation
of larger lipid droplets (Li et al., 2018; Moreno-Navarrete et al.,
2014), which is in agreement with the connections found in our
analysis (Fig. 4).

Among the other highly connected genes in this module, ELOVL6
(elongation of long-chain fatty acids family number 6) has also an
important role in insulin sensitivity, and it acts in the elongation of
saturated and monounsaturated long-chain FAs (Matsuzaka and
Shimano, 2009). This enzyme is involved in the elongation of
FAs, e.g., frommyristic (C14:0) to palmitic acid (C16:0) or from pal-
mitic to stearic acid (C18:0). Although another gene found in this
module, SCD (stearoyl-CoA desaturase), did not have a direct con-
nection in the network analysis with ELOVL6, both participate in FA
metabolism. SCD converts palmitic to palmitoleic acid (C16:1n-7)
and stearic acid to oleic acid (C18:1n-9), being both of themMUFA,
which were positively correlated with this module. Genetic poly-
morphisms in ELOVL6 have been previously reported by our
research group (Corominas et al., 2013, 2015; Crespo-Piazuelo
et al., 2020) as associated with the abundance of myristic, palmitic
and palmitoleic acids (C14:0, C16:0 and C16:1n-7). In a previous
study, we also found this elongase positively associated with MUFA
content (Valdés-Hernández et al., 2023). In addition, the analysis
suggested (corrected P-value < 0.1) a positive correlation between
the Magenta module and the saturated FA: myristic (C14:0), palmi-
tic (C16:0) and stearic (C18:0) acids (Fig. 2). ELOVL6 is also related
to PPARA, which, interestingly, has been found in the Green mod-
ule. A deficiency in ELOVL6 implies a reduction of PPARA and a sup-
pression of FA synthesis and degradation, and increases insulin
sensitivity (Matsuzaka and Shimano, 2009).

Fatty acid synthesis genes (Yellow module)

Even though the Yellow module showed many enriched path-
ways related with cancer and other diseases, there were two signif-
icant pathways related with lipid metabolism: PI3K-Akt signalling
pathway and the regulation of lipolysis in adipocytes. The PI3K-Akt
axis plays a central role in the insulin pathway and acts in liver
increasing gluconeogenesis and glycogen synthesis, but also lipid
synthesis (Khorami et al., 2015; Petersen and Shulman, 2018),
which agrees with the positive correlations found with the SFA
and MUFA. Interestingly, one of the most connected genes of this
module, FN1 (fibronectin 1), an activator of the PI3K-Akt signalling
pathway (Ji et al., 2020), was found enriched in this pathway. This
pathway also had PIK3CG as an associated gene, which is one of the
four genes that constitute the catalytic subunit of the class I PI3K
and works in a wide variety of processes (Engelman et al., 2006).
Other enriched genes found, such as PDGFRA and PDGFRB, were
positive regulators of the PI3K-Akt signalling pathway
(Cunningham et al., 2022).

The other enriched pathway related with lipid metabolism is
the one that regulates lipolysis in adipocytes, which breaks the
stored triacylglycerol into glycerol and FAs (Duncan et al., 2007).
Three genes of the same family of adenylate cyclases (ADCY3,
ADCY4 and ADCY5), which regulate lipolysis in adipocytes (Kuo
et al., 2018), were enriched in this pathway. MGLL, another gene
enriched in this pathway, is involved in the final step of lipolysis,
as it breaks monoglycerides into glycerol and FAs (Fredrikson
et al., 1986).



Fig. 4. Magenta module gene network of the most connected genes expressed in the Longissimus dorsi muscle of the 129 BC1_DU pigs (genes with six or more neighbours are
highlighted in magenta colour and, for visualisation purposes, genes without direct connection with these most connected items are hidden). The size of the node is based on
the number of direct neighbours of the gene. The edges are coloured based on the correlation between the genes, green for positive and red for negative. In this network, all
the correlations are positive.
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Another of the most connected genes, EHD2 (EH domain-
containing 2), can be linked to obesity, as it controls the pathway
related with caveolate-dependent FA uptake (Matthaeus et al.,
2020). Its over-expression suppresses the activity of PPARG, a gene
that was enriched in the previous module, and its silencing affects
insulin sensitivity, lipid storage capacity and lipolysis (Matthaeus
et al., 2020; Morén et al., 2019). EHD2 and caveoline-1 are up-
regulated during adipocyte differentiation, while caveoline-1 also
regulates the adenylate cyclase pathway (Kuo et al., 2018; Morén
et al., 2019).

Adipocytokine signalling (Green module)

The Green module only had one significantly enriched pathway,
the adipocytokine signalling pathway, which plays a central role in
metabolic homeostasis and is an important component in obesity
(Cao, 2014). The gene with the most neighbouring genes that
was associated with the adipocytokine signalling pathway was
IRS2 (insulin receptor substrate 2). IRS2 is involved in insulin sig-
nalling and may be related with human life span and nutrient
homeostasis (Taguchi et al., 2007). PPARA and PPARGC1A (peroxi-
some proliferator-activated receptor gamma-coactivator 1A) genes
were also associated with this pathway. As previously explained
for the Magenta module results, PPARA interacts with ELOVL6.
PPARA is a nuclear receptor related to FA oxidation, and its
decrease can promote obesity (Matsuzaka and Shimano, 2009).
PPARGC1A is involved in lipid and energy metabolism, and it has
been found as a candidate gene for pig meat quality traits
(Gandolfi et al., 2011).
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Regarding the highly neighbouring genes, some were also found
in previous works of our research group, such as GOT1, ILVBL or
ACSL1. GOT1 (glutamate oxaloacetate transaminase 1) is involved
in different catalytic processes and also in FA homeostasis
(Cunningham et al., 2022), while ILVBL (IlvB acetotlactate synthase
like) is involved in the a-oxidation of FAs (Kitamura et al., 2017).
ACSL1 (acyl-CoA synthetase long�chain family number 1) plays a
key role in lipid metabolism, as seen for humans and cattle
(Brasaemle et al., 2004; Zhao et al., 2020), but also for different
pig breeds (Li et al., 2012) and it may promote lipogenic-related
genes such as FABP4, APOE and FASN (Shan et al., 2010). These three
genes were found in the Magenta and Yellow modules, which have
enriched pathways related with FA biosynthesis.

Mitochondrial fatty acid oxidation (Brown module)

The FA degradation pathway was found enriched in the Brown
module. One of the highly neighbouring genes found was related
with this pathway, ACADVL (acyl-CoA dehydrogenase very long
chain). ACADVL is a target gene of PPARA and is involved in mito-
chondrial FA b-oxidation, and has already been found differentially
expressed in the muscle of pigs with extreme FA composition
(Puig-Oliveras et al., 2014). Another gene related to this pathway
is HADH (hydroxyacyl-CoA dehydrogenase trifunctional multien-
zyme complex), whose subunits alpha and beta, are also involved
in FA b-oxidation.

The FA degradation pathway produces metabolites that can be
used in other enriched pathways of this module related with the
mitochondria, such as the citrate pathway (Raimundo et al., 2011;
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Scheffler, 2007). The most neighbouring genes of this module were
composed of three different ATP synthase subunits (ATP5MF,
ATP5F1C and ATP5PB) and three cytochrome c oxidases (COX6A2,
COX6B and COX7B). ATP synthase and the COX proteins are related
to mitochondrial energy metabolism. The ATP synthase is part of
an enzyme complex that stimulates the production of ATPmore effi-
ciently (Jonckheere et al., 2012). COX6A2, which can be found in stri-
ated muscle (Taanaman et al., 1993), is a regulator of respiratory
uncoupling inmuscle, and it is involved in obesity and insulin resis-
tance (Quintens et al., 2013).COX6B is involved inmitochondrial res-
piration (Lazarou et al., 2009), whereas COX7B plays a role in
apoptosis (Indrieri et al., 2012). The genes of otherATP synthase sub-
units were highly neighbouring genes, and they were also found in
previous studies of our research group (Valdés-Hernández et al.,
2023). However, other highly neighbouring genes, such as some
genes from the NADH:ubiquinone reductases family (NDUFAF7,
NDUFS1, and NDUFS2), were newly reported.

Another member of this family, NDUFB8 (NADH:ubiquinone
reductase subunit B8), is also another of the top neighbouring
genes. NDUFB8 is a subunit of the mammalian mitochondrial com-
plex I, and it is involved in the stability and activity of the mito-
chondrial complex (Arumugam and Manickam, 2022). GOT1 and
SCD were located close to the NDUFB8 gene. GOT1 was one of the
top neighbouring genes in the Green module, while SCD was found
in the Magenta module. Furthermore, ELOVL3 (elongation of long-
chain fatty acids family number 3) and HIF1AN (hypoxia�inducible
factor 1 subunit alpha inhibitor) were also found within this SSC14
region. ELOVL3 is involved in SFA elongation, whereas HIF1AN is
related to the PI3K signalling pathway, which was enriched in
the Yellow module (Puig-Oliveras et al., 2016).

Conclusions

Here, we present an analysis of related gene regulatory net-
works in the porcine muscle that are potentially related to FA com-
position in the pig meat. We found four modules that contain
relevant muscle gene networks linked with FA composition of pig
meat, providing further insights on how the physiology of the pigs
influences this relevant phenotype for both meat quality and
human health.
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