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The legislation of food industry is becoming increasingly strict with regard to the quality of food products. Therefore, the market
is demanding for automatic systems of analysis that allow fast and accurate monitoring of the evolution of quality parameters in
agrofood products or permit obtaining information to optimize production processes. In this context, sensors andmore specifically
microsensors play an important role since they allow fast and reproducible measurement of a large number of quality parameters
with good reliability and can be implemented in portable systems. This paper presents a review of the results obtained with an
electronic tongue based on different kinds of microsensors applied to wine analysis by the team of IMB-CNM. This multisensor
system allows on one hand classifying the wine according to its features like grape variety, geographic origin, year, and organoleptic
characteristics and on the other hand quantifying some parameters of interest in quality control, such as alcoholic degree, pH, ions,
total acidity, glycerol, and color.

1. Introduction

Quality control in agrofood processes is a priority worldwide.
Specifically, measurement of some parameters in wine or
alcoholic beverages at various stages of production allows
taking decisions which affect the final quality of the product.
There are commercially available devices that allow quantita-
tivemeasurement of most parameters related to the quality of
wines, such as alcoholic degree, pH, or color. However, these
devices require laboratory facilities, they are not portable,
and often the cost per analysis is high. Therefore, it should
be appealing to develop multiparametric systems that can be
portable and of low cost, require low-power consumption,
and are able to carry out in situ measurements. Solid-state
microsensors meet many of the requirements for these types
of systems because of their small size, mass production, fast

response, and low power consumption. The combination of
these microsensors with chemometric tools for signal proce-
ssing provides multiparametric analytical systems or hybrid
electronic tongues with multiple and attractive applications
to food analysis.

An electronic tongue (ET) [1] consists of a set of sensors
with low selectivity and advanced mathematical methods
based on pattern recognition and multivariate data anal-
ysis, such as artificial neural networks (ANN), principal
component analysis (PCA), soft independent modeling class
analogy (SIMCA), and partial least squares (PLS). These
ETs can analyze samples from a qualitative point of view,
by means of classification according to the organoleptic
characteristics, presence of adulterants or compounds of
different nature, type of production, and so forth. Applied to
quantitative analysis, the ETs can improve the quality of the
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Figure 1: Analogy between the electronic tongue and the gustatory organ system.

results, for example, the sensitivity of the sensors. Because
of the large number of signals, the system can minimize
some limitations of the analysis such as interferences, matrix
effects, and detection limits.

The first application of multisensor systems for food
classification according to the organoleptic characteristics led
to the beginning of the study of these systems under the
name of Taste Sensor [2]. Lately, these systemswere applied to
measure parameters different than organoleptic descriptors
and other types of samples and they were renamed electronic
tongues [3]. Figure 1 shows the analogy between the ET and
the gustatory organ system. As can be seen, the system is
formed by an array of sensors, which emulate the nerve
endings of the tongue. The signals obtained from these
sensors are processed by a chemometric tool in the same way
as the brain treats the nerve pulses. The results of the brain
treatment are the five basic tastes and the synergies between
them, while the results of the chemometric processing are
either qualitative or quantitative analysis.

It should be noted that, due to the multidisciplinar-
ity required for these developments, the research groups
working on electronic tongues are limited to a few and the
most reported applications are in wine [4]. ET systems for
classifying grape varieties [5, 6], adulteration [7], or even
the time of aging [8] are described. One can also find in
the literature ETs applied to quantify parameters of interest
for the wine industry [9] or to correlate sensory descriptors
of expert panels [10]. However, it should be stressed that
the large majority of these systems are optimized for the
analysis of monovarietal wine samples. It is well known that
the identification and even quantification of different grape
varieties in wine blends would be of great interest for the
producers [11]. This aspect has also been addressed by our
research group.

The use of hybrid electronic tongues, which use sensors of
different nature (potentiometry, amperometry, conductance,
spectrophotometry, and gas sensing), was described in the
late nineties as a powerful tool for improving the results
of wine analysis with sensors [12, 13]. Since then, only four
hybrid systems applied to wine have been reported, including
these incorporating optical measurements [14–17].

Regarding commercial electronic tongues, there are two
in themarket. One is theAstree,manufactured byAlphaMOS
[18], whose sensors are ion-selective field effect transistors
(ISFETs) fabricated in the IMB-CNM. The Astree is used by
the pharmaceutical industry primarily to study drug formula-
tions from the standpoint of taste. However, its incursion into
themarket of food quality control is not yet consolidated.The
second ET is the result of the research led by Professor Toko
and it is manufactured in Japan. The device is called Taste
Sensor and it is sold through the company Intelligent Sensor
Technology (INSENT) [19].This equipment is applied to food
analysis.

The Chemical Transducers Group of the IMB-CNM
has been working in the last decade on the development
of ETs for different applications mainly in wines and in
grape juice. The objective is to obtain feasible analytical
systems for quality control of wines that could be used in
the production line as well as in the final product. These
ETs contain electrochemical microsensors fabricated with
microelectronic technology, optical sensors fabricated with
polymer technology, and data processing tools (PCA, PLS,
and SIMCA). The results demonstrate that these systems
can differentiate wines according to grape variety, vintage
year, and geographical origin. They are also able to quantify
chemical parameters in wines such as pH, ions, alcohol,
and acidity, with an error below 10% compared to standard
methods of analysis.
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Table 1: Composition of the reference solution for ISFETs measure-
ments.

Compound Concentration (mM)
KNO3 0.12
KH2PO4 5.26
MgSO4 4.41
CaCl2 2.26
Malic acid 19.00
Potassium bitartrate 33.00
NaOH 13.91

2. Materials and Methods

2.1. Microsensors Used. The used electrochemical sensors
were fabricated with silicon technology in the Clean Room
of IMB-CNM. These were ISFETs [20], Pt 4-electrode sen-
sors [21], and gold amperometric microelectrodes [22]. The
ISFETs allowed measuring pH and Na+, K+, Ca2+, Cl−, and
NO
3

− ions in solution [23–25]. In order to make the ISFETs
selective to these ions, the sensing surface was modified with
polymeric membranes. The Pt 4-electrode sensors were used
for measuring conductivity and redox potential (ORP) and
finally Au amperometric sensors were used for measuring
oxidoreduction currents at several potentials.

The optical sensors were fabricated with soft lithography
techniques using the polymer polydimethylsiloxane (PDMS)
as the constituent material. The device consists of a hollow
prism which can be filled with wine by two fluidic ports.
Two biconvex lenses modify the optical path before and after
the propagation of light through the prism [26]. The mea-
surement is performed by absorption in the visible range—
between 200 nm and 1000 nm—although it is expandable in
function of the input light and the optical reader (it could
reach NIR values).

2.2. Reagents, Solutions, and Wine Samples. All the reagents
used in these studies were of high purity and analytical grade
or equivalent. All solutions were prepared with deionized
water. Furthermore, for ISFETs measurement, a reference
solution containing 12% of ethanol and an average concen-
tration of themain compounds present in wine was prepared.
The components of this solution and the concentrations are
shown in Table 1.

Regarding the wine samples, studies were carried out
with different sets of red and white wines provided by the
Catalan Institute of Vineyard and Wine (INCAVI), which is
the official regulatory agency of theGeneralitat de Catalunya.
The set of white wines consisted of 18monovarietal (100% one
grape variety) samples based on the following grape varieties:
5 Macabeu, 5 Parellada, 4 Chardonnay, and 4 Xarel⋅lo. The
set of red wines was formed by 12 monovarietal samples
based on 4 Merlot, 3 Cabernet Sauvignon, 3 Grenache, and 2
Trepat varieties. Certain chemical and optical parameters in
these wines were determined by the INCAVI using standard
methods.These methods are dictated by the European Union
[27] and are well established by the INCAVI laboratories.The

routine protocol consists of one measurement for sample,
without repetitions.

Furthermore, a study was performed with 20 mixtures
using three red grape varieties: Cabernet Sauvignon, Merlot,
and Pinot Noir, in different proportions (15%, 25%, 50%,
75%, 85%, and 100%). The base wines were from the 2008
vintage, harvested in Penedès (Spain) and collected when
the malolactic fermentation was completed. The percentages
of each variety were determined using a simplex-lattice
experimental design, where the proportions of the different
components sum 100%. For each blend, triplicate samples
were prepared resulting in 60 samples.

2.3. Methodology. The wine samples were analyzed with-
out dilution with the different sensors: ISFETs selective to
pH and several ions, Pt 4-electrode sensors for measuring
conductivity and ORP, the amperometric microelectrode for
measuring reduction-oxidation reactions, and the hollow
prism, that provides color measurement. Each of these sets of
sensors has its own instrumentation ofmeasurement anddata
collection, so that the samples were analyzed sequentially. In
the case of the optical system, measurements were carried
out by filling the system directly with the wine. In order to
obtain the spectra in absorbance units, deionized water was
used as reference and it was measured before and after each
wine sample. The light was emitted from broadband light
source (Ocean Optics HL-2000, Oracle, USA). The readout
multimode optical fiber was connected to a spectrometer
(Ocean Optics HR4000) with a spectral resolution of 2 nm.
For each wine sample, the average of 10 consecutive scans
was considered. Therefore, the complete measurement of a
wine sample was performed in approximately 15 minutes. No
replications of each sample were done following the INCAVI
protocol and also to get a rapid analysis and prevent changes
of the wine sample.

The characterization of the analytical system was per-
formed by measuring a set of wine samples with known
values of the considered parameters. This process is called
training and the result is a response model for further study
of unknown wines. If the analyzed parameter is qualitative
(e.g., grape variety), a multivariate analysis of the sensor data
using PCA is performed [28]; therefore data of wine samples
are placed in a two-dimensional space that coincides with
the directions of maximum variation between them. This
distribution method classifies the samples according to the
considered parameter. Once the system has been character-
ized, the signals of an unknown sample are interpolated in
the PCA to obtain their properties.

In order to demonstrate the viability of the hybrid ET to
discriminate between grape varieties, another chemometric
method called SIMCA was used [28]. This method is very
useful to predict objectively and statistically whether a sample
belongs to a class or group defined a priori. In this case, the
response model is based on the similarities between samples
of the same group.

To perform a quantitative analysis of a chemical param-
eter it is also necessary to calibrate the system using a
linear treatment like PLS [28]. In this case, the signals
from all sensors and the training samples are related to the
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Figure 2: pH ISFET signals for a set of white wines with different
grape varieties.

values obtained by a reference method of analysis. Then
the unknown sample is interpolated in the PLS model to
obtain the desired parameter value. The unknown samples
are not involved at any point in the calibration. Unlike a
uniparametrical calibration, a model for every parameter
can be generated using the same sensor signals, without
additional experiments.

Finally, the INCAVI provided the results of descriptors of
ninewhite wines.Thewineswere evaluated by a panel of eight
tasters with extensive experience in wine sensory evaluation.
A descriptive analysis of each wine was performed in a room
set in accordance with ISO 8589 [29]. Sight, smell, and taste
descriptors were evaluated by the panelists, assigning a value
ranging from 1 (no intensity) to 9 (maximum intensity).
The sensory attributes used for this analysis were global,
fruity, floral, spice, and vegetal flavours, as well as global
taste, acidity, and color quality. Samples were tasted in a
randomized order. Wines were presented to the panelists in
tasting glasses (NF V09-110 AFNOR, 1995) marked with two-
digit random numbers. Tasting was performed at 20–22∘C,
and water was provided to rinse the palate between tastings.
The final marks of the panel were used as reference data to
train the ET using PLS and to evaluate the correlation with
the system outputs.

3. Results and Discussion

3.1. Election of the Variables. One of the most important
steps in a multivariate analysis is the identification of the
input variables. The aim is to get the maximum information
from the sample, but with the minimum number of variables
(sensors) in order to simplify the experimental method and
the response model. In the case of the ISFETs, the input data
corresponded to the relative signal of each ISFETwith respect
to the synthetic reference solution.This standard solutionwas
measured before each wine sample in order to prevent the
drift and the matrix effects, which may distort the signal. As
an example, Figure 2 shows the signals (in mV) obtained by

the pH-ISFET for a set of 18 white wines. As can be observed,
the sensor signal is different for each sample, but there is
certain homogeneity for the wines of the same grape variety.

For the conductivity and ORP sensors, the data used
in the model were the signals obtained directly from the
sensors after 3-minute recording. For the amperometric
gold microelectrode, cyclic voltammograms were carried out
to obtain the input data for the model. As an example,
Figure 3(a) shows the voltammetric signal obtained for four
monovarietal white wines: Macabeu, Parellada, Xarel⋅lo, and
Chardonnay. The two redox peaks correspond to the oxida-
tion and reduction of gold at +1.3 V and +0.65V, respectively.
These peaks indirectly provide information of the sample
matrix. In addition, two smaller peaks are observed at +1.0 V
and −0.35V with different current intensities depending on
the wine. These peaks can be related to the amount of
polyphenols. Therefore, the intensity of these four peaks was
used as variables.These values were similar for red wines (see
Figure 2 in [17]). These electrochemical variables were the
most significant for white wines for the construction of the
chemometric models.

Finally, the absorbance spectra of wines were analyzed to
determine the optical variables. Figure 3(b) shows the signal
obtained for four monovarietal red wines, using deionized
water as reference. As can be seen, the spectra are very
different between the different grape varieties: Grenache,
Trepat, Cabernet Sauvignon, and Merlot. In order to choose
the variables for red wines, we applied the EU method that
defines the color of wine at absorbance of 420, 520, and
620 nm [27]. These values were also used for white wines.
The value at 920 nm was also elected for red wines to build
the model considering the high variation between samples.
It is noteworthy that these optical variables were the most
significant for the construction of the red wine models.

A data matrix was constructed with the signals obtained
with all these sensors. The differences between white and
red wines are too much great that it was necessary to
analyze and treat the two sets of samples separately. For
all the chemometric methods used, the original values were
previously autoscaled (all the variables were centered and
set to a standard deviation equal to 1) to avoid the fact that
the variables have different influence on the model. Then
the matrix was introduced into the Unscrambler statistical
program (CAMO, Norway) to obtain the processed models.

3.2. Qualitative Analysis of Grape Varieties. The first study
was to test if the system was able to classify wines according
to the grape variety. The sensor signals were treated using
the PCA method. Figure 4(a) shows the representation of
the results obtained for the monovarietal white wines and
Figure 4(b) shows those for the monovarietal red wines. As
can be seen, the system is capable of differentiating between
different varieties of grapes with a good capacity for separa-
tion. In the model for white wines, it is also observed that
the Macabeu wines from different regions of Catalonia are
in different groups and distinguished from the other samples
[30]. In the case of the red wines, there is a differentiation
of the Merlot samples from different vintages (2007 and
2008) [17], which demonstrates the ability of the system to
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Figure 3: Cyclic voltammograms obtained for a set of white wines (a) and spectra of absorbance obtained for a set of red wines (b). The
selected variables are indicated in each case.

distinguish the geographical origin and the year of the wine
samples.

This system is also able to differentiate the samples
according to the percentage of grape variety in bi- or triva-
rietal wines [31]. In the study performed with 20 triplicate
mixtures of Cabernet Sauvignon, Merlot, and Pinot Noir,
the distribution of samples shown in Figure 5 was obtained.
As depicted there is a clear distinction between mixtures
containing a percentage greater than or equal to 75% of the
main grape variety. Even in the case of Pinot Noir it was
possible to distinguish themonovarietal samples (100%) from
those with 85 or 75%. The bi- and trivarietal blends with
percentages below 75% were all situated in the centre of the
PCA plot, indicating the feasibility of the model.

For this studywith bi- and trivarietal wines, also a SIMCA
analysis was performed to check if the system was able to
distinguish statistically between the monovarietal wines and
the mixtures thereof. One way to visualize the results of a
SIMCA analysis is through a Coomans diagram as shown
in Figure 6. The 𝑥-axis represents the distance to the Pinot
Noir (100%) model and the 𝑦-axis represents the distance
to the Merlot (100%) model. That is, the closer to 0 the 𝑥
value of a sample is, the more similar to a monovarietal
Pinot Noir it is, and the closer to 0 the 𝑦 value is, the more
similar to a monovarietal Merlot it is. Up to a value of 2.9
there is a probability of 90% that the wine is monovarietal.
Therefore, up to a value of 2.9 the system considers all
samples as 100%. Therefore, in this particular example,
the three 100% Pinot Noir wines are located within their

Table 2: PLS regression data for the comparison of obtained
versus expected percentage for the three considered grape varieties
for prediction set of mixtures (intervals calculated at the 95%
confidence level).

Grape variety Correlation (𝑟2) Slope Intercept (%)
Pinot Noir 0.976 0.96 ± 0.08 1.6 ± 3.7
Merlot 0.949 0.94 ± 0.11 3.0 ± 4.7
Cabernet Sauvignon 0.939 0.90 ± 0.12 4.5 ± 5.7

own model and well separated from the other mixtures. It
is even possible to differentiate the samples with 85% and
75% Pinot Noir. In the case of the Merlot model, a few
samples with a percentage higher than 75% of Merlot are
confused with the monovarietal ones. It is interesting to note
that a great difference in organoleptic characteristics is also
reported between Pinot Noir and Merlot.

A PLS regression was performed to evaluate the system’s
ability to quantify the percentage of each grape variety in
these mixtures. Table 2 summarizes the results obtained for
the prediction set of samples, those wine mixtures that have
not participated in the calibration, for each of the three
models: Pinot Noir, Merlot, and Cabernet Sauvignon. The
linear regression compares the percentage obtained by the
system with the expected percentage for each grape variety.
As can be seen, in all cases confidence intervals calculated
at 95%, including unity slope and zero intercept, showed no
significant differences between the obtained and expected
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Figure 4: Representation of the PCA results for a set of white wines (a) and for a set of red wines (b).

PC 1 (27%)
−6 −4 −2 0 2 4

PC
 2

 (1
5%

)

−4

−3

−2

−1

0

1

2

3

4

Mixtures 50% : 50%
Trivarietal mixtures

100%
Pinot Noir

Pinot Noir
85 and 75%

≥75% Merlot

Cabernet S.
≥75%

Figure 5: Representation of the PCA results for the 20 triplicate
mixtures of Cabernet Sauvignon, Merlot, and Pinot Noir.

values. In addition, the correlation coefficients are quite
significant.

3.3. Quantitative Analysis. Wine samples were alsomeasured
to obtain a quantitative analysis for several parameters of
interest in wine quality control [17, 30]. For that, PLS
regression was performed with a set of white and red wines.
In Tables 3 and 4 the relative error calculated is shown
when comparing the values obtained using the multisensor
system and those using standard analytical techniques for
the test-set samples. As noted, low errors were obtained for
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all parameters (<7%), but for particular parameters such as
pH and volumetric alcoholic degree (VAD) this error is even
lower. The pH results are quite obvious because the system
contains sensors for measuring pH (ISFET). However, there
are no specific sensors for glycerol, total acidity, and VAD;
therefore the results are quite satisfactory.

Theuse of optical sensors allowed determiningwine color
parameters, such as intensity of color, tonality, and CIELab
L. Table 5 shows the relative errors obtained for a set of
white wines. The low errors obtained for the determination
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Table 3: Relative errors obtained in the quantification of chemical parameters using the PLS regression for a set of white wines.

Sample VAD Total acidity pH [Ca2+] [Mg2+] Glycerol
Macabeu 2.82 3.7 0.79 0.7 4.9 6.0
Parellada 0.07 9.5 3.55 5.1 0.1 2.0
Chardonnay 3.32 2.7 1.16 5.7 2.2 4.3
Xarel⋅lo 0.62 1.0 4.76 4.0 2.8 12.3
Mean error (%) 1.71 4.2 2.56 3.9 2.5 6.2

Table 4: Relative errors obtained in the quantification of chemical parameters using the PLS regression for a set of red wines.

Sample VAD Total acidity pH [Ca2+] [K+] Glycerol
Trepat 4.45 0.6 2.20 5.1 4.0 8.8
Grenache 4.05 7.7 1.34 6.1 6.7 2.3
Merlot 2007 2.31 2.6 0.91 3.9 0.7 3.8
Merlot 2008 6.52 8.0 2.03 2.4 3.2 5.6
Cabernet S. 0.99 9.0 4.01 8.7 8.5 2.7
Mean error (%) 3.66 5.6 2.10 5.2 4.6 4.6

of CIELab L∗ parameter and the errors below 5% for the
determination of the others are remarkable.

These quantitative results confirm the capacity of the
multisensor system for measuring multiple parameters with
acceptable accuracy. It is noteworthy that some of these
parameters are obtained by the combination of nonspecific
sensors and chemometric methods. This confers a great
versatility to the system given that it can measure the desired
parameters after a good training of the system.

3.4. Correlation to the Taste Panel. Finally, nine white wines
were tested with the electronic tongue to obtain a correlation
to the scores of human sensory assessments. Eight sensory
parameters were studied by trained panelists and used to
construct a PLS model of prediction. The best results were
obtained for four descriptors: the global flavour, global
taste, acidity, and color, with mean relative errors of 7.2%,
7.4%, 4.2%, and 2.4%, respectively. Bars graphs with the
outputs of the ET and the taste panel scores for these four
parameters are shown in Figure 7. These four parameters
are related to global perceptions of sight, smell, and taste.
Therefore the nonspecific sensors used, which respond to
several chemical compounds and their combinations, are able
to extract general characteristics of wine matrix, obtaining a
good correlation. For the rest of flavours scored (floral, fruity,
vegetal, and spice), the relative errors obtained were above
20% in general. This could be explained by the fact that these
descriptors are related to volatile compounds and very special
tastes and the ET is not able to distinguish.

4. Conclusions

The results obtained with this hybrid electronic tongue
demonstrate that the combination of different kinds of

sensors with chemometric tools for signal processing offers
a great challenge in the area of food quality control. These
systems could be applied to classify food based on the
composition, to detect abnormalities in the production pro-
cess, to set the homogeneity of the raw material and the
final product and even to confirm that the parameters are
within legal or required limits, and so forth. Those different
parameters can be defined previously and the ET is trained
(calibrated) accordingly. Therefore this is a highly versatile
instrument since it can be adapted to different applications
and requirements of the customer.

Regarding the potentiality as analyzers, the ETs can
measure a large number of parameters with a limited number
of sensors and with high precision and reliability and with
high throughput, making the pretreatment of the sample
unnecessary. Currently there is nothing similar in the mar-
ket except colorimetric systems using Fourier transform
processing. These systems measure the absorbance of the
sample in a wide range of wavelengths, which are then
compressed and correlated with the concentration of various
parameters. In comparison, the advantages of the ET are a
greater versatility due to the different nature of the sensors
and a better accuracy for parameters for which selective
sensors exist. Besides, an important point is that, with an ET,
qualitative and quantitative analyses are obtained using the
same experimental data.

The results so far demonstrate that the microsensor
technology is suitable for the development of portable equip-
ment and applicable for in situ monitoring. This aspect
is important given that currently almost all the analytical
methods of the food industry are based on conventional
laboratory techniques—distillations, titrations, extractions,
and so forth—and on analytical techniques that require
complex equipment.
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Table 5: Relative errors obtained for the quantification of color parameters using the PLS regression for a set of white wines.

Sample Intensity of color Tonality CIELab L∗

Macabeu 4.67 1.09 0.05
Parellada 4.56 3.66 Not provided
Chardonnay 0.87 2.48 0.46
Xarel⋅lo 7.29 4.23 0.10
Mean error (%) 4.35 2.86 0.20
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Figure 7: Bars graphs with the correlation results between the taste panel and the ET.



Journal of Sensors 9

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors acknowledge funding from the Spanish R&D
National Program (MINECO Project TEC2011-29045-C04-
01/04). The technical assistance of Nidia Santamaŕıa, Alfredo
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