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Highlights 18 

 SOC stocks were modelled using legacy data, environmental factors and geostatistics. 19 

 The importance of SOC stock drivers differed in the top and subsoil. 20 

 Effects of drivers on agricultural SOC stocks vary spatially at the regional scale. 21 

 SOC stocks in Catalan agricultural soils contain 4.88 ± 0.89 kg/m2. 22 

 A baseline framework was established to design climate change mitigation strategies. 23 
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Abstract 25 

Estimating soil organic carbon (SOC) stocks under agriculture, assessing the importance of their 26 

drivers and understanding the spatial distribution of SOC stocks are crucial to predicting possible 27 

future SOC stocks scenarios under climate change conditions and to designing appropriate 28 

mitigation and adaptation strategies. This study characterized and modelled SOC stocks at two soil 29 

depth intervals, topsoil (0-30 cm) and subsoil (30-100 cm), based on both legacy and recent data 30 

from 7,245 agricultural soil profiles and using environmental drivers (climate, agricultural practices 31 

and soil properties) for agricultural soils in Catalonia (NE Spain). Generalized Least Square (GLS) 32 

and Geographical Weighted Regression (GWR) were used as modelling approaches to: (i) assess 33 

the main SOC stock drivers and their effects on SOC stocks; (ii) analyse spatial variability of SOC 34 

stocks and their relationships with the main drivers; and (iii) predict and map SOC stocks at the 35 

regional scale. While topsoil variation of SOC stocks depended mainly on climate, soil texture and 36 

agricultural variables, subsoil SOC stocks changes depended mainly on soil attributes such us soil 37 

texture, clay content, soil type or depth to bedrock. The GWR model revealed that the relationship 38 

between SOC stocks and drivers varied spatially. Finally, the study was only able to predict and map 39 

topsoil SOC stocks at the regional scale, because controlling factors of SOC stocks at the subsoil 40 

level were largely unavailable for digital mapping. According to the resulting map, the mean SOC 41 

stock value for Catalan agriculture at the topsoil level was 4.88 ± 0.89 kg/m2 and the total magnitude 42 

of the carbon pool in agricultural soils of Catalonia up to 30 cm reached 47.9 Tg. The present study 43 

findings are useful for defining carbon sequestration strategies at the regional scale related with 44 

agricultural land use changes and agricultural management practices in a context of climate change. 45 

 46 

Keywords: Agricultural SOC stocks, mitigation strategies, Generalized Least Square, Geographical 47 

Weighted Regression, Mediterranean agriculture. 48 

 49 

1. Introduction  50 
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Soils are the largest carbon (C) terrestrial sink at global level, containing approximately 1500 Pg 51 

C at 1 m depth (Batjes, 2014), and the C stored exceeds that stored in plant biomass and the 52 

atmosphere (Vicente-Vicente et al., 2016). However, soils can become a source of atmospheric 53 

carbon dioxide (CO2) depending on, for example, land use or management practices (Smith, 54 

2012). Land use change is the leading cause of soil organic carbon (SOC) depletion at the global 55 

scale, while the main current land use change is deforestation for cultivation, particularly in 56 

subtropical and tropical countries (Canadell et al., 2007). Overall, in temperate zones, cropland 57 

areas lose more than 50% of their original SOC at the topsoil (0-30 cm) in about 25 to 50 years 58 

after conversion from natural ecosystems, due to changes in soil temperature, moisture regimes, 59 

soil disturbance and erosion (Lal et al., 2011). Compared to their initial status before cultivation, 60 

cropland soils covering 40-50% of global land surface (Smith, 2012) have lost about 55 Pg C 61 

worldwide (Canadell et al., 2007), but at present they still store an overall pool of 157 Pg C down 62 

to 1 m depth (Jobbagy & Jackson, 2000), which is about 10% of the global SOC pool. Fortunately, 63 

agricultural soils can be managed through the implementation of Recommended Management 64 

Practices (RMPs) to improve and restore SOC content and soil properties (Lal et al., 2011). In 65 

this respect, mitigation strategies such as the ‘4 per mille Soils for Food Security and Climate’, 66 

launched at COP21, seek to increase global soil organic matter stock as a compensation for the 67 

global emissions of GHGs, in this case, by increasing SOC 0.4 per cent per year in the first two 68 

meters of soil (Minasny et al., 2017).  69 

Understanding the current spatial distribution of SOC stocks and its main drivers will help to 70 

predict SOC stocks changes in future climate change (CC) scenarios and define CC mitigation 71 

strategies (Yigini & Panagos, 2016). Many studies have tried to illustrate the influence of 72 

environmental drivers on soil properties as a means to understand SOC distribution based on 73 

variables such as land use, soil type, parent material, topography and climate (see review in 74 

Zhang et al., 2011). It is widely known that climate variables are important drivers of SOC stock: 75 

increasing SOC is associated with higher annual precipitation and lower temperature (Fantappie 76 
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et al., 2011; Hoyle et al., 2016). Soil properties can also affect SOC stocks inasmuch as organic 77 

C is stabilized by means of physical protection or chemical mechanisms (Lawrence et al., 2015). 78 

Mediterranean agriculture is characterized by net primary productivity regulated by limiting 79 

factors and scarce resources, such as poor water availability, soil disturbance and nutrient 80 

deficiencies (Rashid & Ryan, 2004; Torrent, 2005). Limiting net primary productivity in agriculture 81 

under Mediterranean conditions consequently reduces SOC stocks in Mediterranean agricultural 82 

soils, since C inputs, such us litter, roots or crop residues, are limited. Soil C sequestration occurs 83 

if the balance between C inputs and outputs (through emissions from respiration and 84 

mineralization) is positive and finally leads to increased SOC stocks. Several meta-analyses 85 

have been performed about SOC sequestration (C inputs > C outputs) in Mediterranean 86 

agricultural systems (Aguilera et al., 2013; Vicente-Vicente et al., 2016) with reference to land 87 

uses and RMPs. A more than likely future climate scenario in the Mediterranean region entails 88 

an increase in temperatures linked with a decrease in available soil water content that would 89 

negatively affect yields and, consequently, associated soil C inputs. However, although it is 90 

widely known that warming increases microbial activity, soil moisture could act as the main driver 91 

of soil biomes in Mediterranean environments, limiting SOC losses by microbial mineralization 92 

(Alcañiz et al., 2016). At all events, water management (irrigation or soil water harvesting and 93 

storage) is critical to the feasibility of the agricultural sector in Mediterranean regions (Montanaro 94 

et al., 2017) and the avoidance of SOC losses, since available water for crops increases biomass 95 

productivity, turnover of organic matter timing and humus formation (Lal, 2001).  96 

Measure and prediction of SOC stocks has become a key issue in the last few decades, due 97 

to the potential impacts of climate change on them. Making accurate predictions in complex 98 

systems such as soils is a challenge, because, among other issues, data on soils is very often 99 

outdated, limited and fragmented (Chiti et al., 2012; Aksoy et al., 2016). However, there is a wide 100 

range of techniques used in predicting and mapping SOC from landscape to national or 101 

continental levels (see review in Minasny et al., 2013). Modelling based on experimental data 102 
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provides opportunities to quantify the impacts of different management practices and future 103 

climate change conditions on SOC stocks (Zhang et al., 2016). The definition of a SOC stock 104 

baseline (e.g. Lugato et al., 2014a or FAO, 2018) is essential for future evaluations and, 105 

particularly in agricultural ecosystems, could contribute to assessment of the starting or ending 106 

point of the stock change that may occur after land use changes (Chiti et al., 2012) or after the 107 

establishment of certain RMPs. Moreover, mapping SOC stocks based on dynamic drivers, such 108 

as crop type, management or climate, and static drivers such as soil properties or topography 109 

would contribute to a better understanding of the spatial pattern of SOC stocks in agricultural 110 

Mediterranean soils. 111 

To date, other SOC stock assessments have been performed for soils under agriculture in 112 

the study area (national level: Rodriguez-Martin et al., 2016 and sub-national level: Alvaro-113 

Fuentes et al., 2011), but the present study focuses particularly on SOC stocks in agricultural 114 

soils based on a database containing data from a large number of agricultural soil profiles, with 115 

a high density of sampling points, distributed throughout the study area. Moreover, the present 116 

study provides the first assessment of agricultural SOC stocks in topsoil (first 30 cm) and subsoil 117 

(30 cm to 100 cm) while considering the main SOC drivers for Catalonia (32,108 km2 NE Spain), 118 

a region that is representative of the diverse Mediterranean agricultural systems. In the present 119 

study, geostatistical techniques were applied to model SOC stocks for agricultural soils in the 120 

study area based on legacy data from 7,245 agricultural soil profiles.  121 

The main objectives of this study were: i) to assess SOC stocks at two depth intervals (top 122 

and subsoil) in soil profile; ii) to identify the main explanatory variables driving SOC stocks at the 123 

regional scale; iii) to analyse the spatial variability of relationships between SOC stocks and 124 

drivers; and iv) to map SOC stocks at the regional scale using a subset of explanatory variables 125 

(climatic, topographic and agricultural management). 126 

 127 

2.  Material and Methods 128 
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The technical flowchart of this study is shown in Figure 1 indicating the main steps followed in 129 

this section. 130 

2.1 Study area 131 

The study area is limited to agricultural soils in the north-eastern Iberian Peninsula (Catalonia, 132 

Fig. 2). According to SIGPAC (2016), the Agricultural Plots Geographical Information System for 133 

the year 2016, the cropland area in Catalonia is about 8,837 km2, not including pastures (340 134 

km2) and abandoned cropland (639 km2). Almost 67% of the cropland area remains under rainfed 135 

conditions (Fig. 2). Arable land is the most widespread cropland, representing 61% of cropland 136 

area, followed by woody crops: Orchard category (17%), Olives (15%) and Vineyard (6%). 137 

Agricultural land uses extension in km2 is shown in the stacked bar graph of Fig. 2, with its spatial 138 

distribution in Fig. 3. Catalonia presents Mediterranean climatic conditions characterized by mild 139 

winters and hot and dry summers (Terradas & Savé, 1992), but diverse meso- and micro-140 

climates can be found. A strong climatic gradient (Martin-Vide et al., 2016) is defined by mean 141 

annual temperature (ranging from 0 to 17.3 ºC) and annual precipitation (from 1,464 mm in the 142 

Pyrenees to 335 mm in the Ebro Valley). Moreover, a marked continentality gradient is presented 143 

between inland (W) and coast (E). See more details in Figure A.1. 144 

Agriculture in the study area is mainly developed over Inceptisols and Entisols (mainly 145 

Fluvents and Orthents) and, to a much lesser extent, over Alfisols, Aridisols and Mollisols (SSS, 146 

2014).  Inceptisols (medium-poorly developed soils) over calcareous substrates and Entisols 147 

(very poorly developed soils) cover most of the study area. Aridisols are typical of areas where 148 

evapotranspiration is higher than precipitation, limiting crop production except when irrigation is 149 

applied, in which case high yields are obtained. Aridisols are mainly located in the Ebro valley, a 150 

historically irrigated cropland area. Agricultural soils are mostly medium (loamy) textured, with a 151 

basic reaction. Calcium carbonate-rich soils are dominant, often with a petrocalcic horizon as a 152 

root-limiting layer. Salinity problems occur over significant areas in the Ebro Valley and river 153 

deltas. 154 
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2.2 Data harmonization and SOC stock estimations 155 

Data collection 156 

Soil data has been obtained from: i) the Soil database of Catalonia (BDSisCat; ICGC, 2018) of 157 

the Cartographic and Geological Institute of Catalonia (ICGC, acronym in Catalan) and ii) soil 158 

data of the Department of Agriculture, Livestock, Fisheries, Food and Environment of the Catalan 159 

Government (DARP, acronym in Catalan). Most of this data is derived from the soil survey for 160 

the Soil Map of Catalonia 1:25000 (MSC25M; ICGC, 2017). The initial dataset included data of 161 

7,245 soil profiles, acquired from 1980 to 2015. 162 

SOC stock estimations  163 

SOC stocks were estimated for two depth intervals through the vertical soil profile: standard 164 

depth intervals for topsoil (0-30 cm) and subsoil (30-100 cm). For a given horizon, the SOC stock, 165 

in kg/m2, was calculated as follows: 166 

SOC = Bd · (OCc/100) · 10000 · Th · (1 - S) · (1/1000)                     [1]   167 

where Bd is bulk density (g cm-3), OCc the concentration of OC in the fine earth (as % w/w), Th 168 

stands for the thickness of the horizon in cm, and S the stoniness (dimensionless), understood 169 

as the fraction of horizon volume (0 to 1) occupied by gravel and stones. Whereas stoniness  170 

was estimated visually in the field during soil profile description and sampling, bulk density is 171 

rarely measured in the field, and it was approached by a pedotransfer function (Honeysett and 172 

Ratkowski, 1989). The total SOC stock of a given profile is the cumulative sum of the SOC stocks 173 

in the individual horizons, down to the desired depth.  174 

Often this depth (either 30 or 100 cm) does not match the lowermost limit of any horizon. In such 175 

a case, it is necessary to apply a correction factor for the stock of the last horizon. Let us assume 176 

that the soil has n horizons, and that the last one is divided by two by this desired depth, dD. The 177 

total cumulative SOC stock, SOCC, will be: 178 
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 179 

𝑆𝑂𝐶𝐶 = (∑ 𝑆𝑂𝐶𝑖
𝑛−1
𝑖=1 ) +  (𝑆𝑂𝐶𝑛 ·

𝑑𝐷−𝑑𝑈𝑛

𝑑𝐿𝑛−𝑑𝑈𝑛
)                                                                [2] 180 

where SOCC is the cumulative sum of the SOC stocks of all horizons down to the desired 181 

depth (either 30 or 100 cm), n stands for the horizon number which is divided by two by the 182 

desired depth, dD indicates the desired limit, dUn is the depth of the upper limit of this horizon, and 183 

dLn is the depth of the lower limit of this horizon. 184 

Data selection 185 

Profiles were excluded if data  of one or more of the explanatory variables was missing (mainly 186 

soil properties; listed in Fig. 1) or if data needed to estimate SOC stocks was missing, as well. 187 

The deeper the lower limit of the depth interval, the fewer the number of profiles contained in the 188 

dataset, for usually only top horizons were analysed in soil site legacy data on organic matter 189 

and other soil properties. Spatial distribution of profiles’ final dataset for each horizon (top and 190 

subsoil) is shown, respectively, in Figure A.2. 191 

 192 

2.3 Explanatory variables  193 

A set of climatic (MAT, MAP, MAP/MAT, ET0 , AI; see definition of abbreviations in Fig. 1 caption), 194 

topographic (altitude), agricultural (land use and water management) and soil variables (soil 195 

texture, soil type, soil drainage, clay content and depth to bedrock) was used as potential 196 

explanatory variables for modelling SOC stocks (listed in the Explanatory Variables section of 197 

the methodology flowchart in Fig. 1). Detailed information about explanatory variables and their 198 

sources are explained in Appendix B of methodology. 199 

 200 

2.4 Statistical analyses and modelling 201 
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Statistical and modelling analysis of the SOC stock data was conducted using the R software (R 202 

Development Core Team, 2014) and ArcGIS 10.3. (ESRI, 2011). In the analysis, the steps 203 

described below were followed: 204 

1. Firstly, a descriptive statistics analysis (i.e. mean and standard deviation) of SOC stock 205 

data was carried out to characterize our datasets (Table 1).  The results were aggregated 206 

by levels of the categorical explanatory variables.  207 

2. Next, a preliminary visual inspection of the relationships between response and 208 

explanatory variables was performed. A careful assessment of these relationships led us 209 

to apply a square-root transformation of the SOC stock data to reduce or eliminate the 210 

impact of any heteroscedastic errors present in the data . 211 

3. We then applied analysis-of-variance (ANOVA) to check for significant differences among 212 

the mean values of the square-root-transformed SOC stock data. To further test whether 213 

there existed significant pair-wise differences we used a post-hoc Tukey HSD test.  214 

4. A linear regression (LR) was subsequently performed to assess the predictive power of 215 

the selected set of explanatory variables, to measure the presence of collinearity effects 216 

between them and, finally, to investigate the existence of spatial correlation in the 217 

residuals of the fit. The LR model was separately applied to the square-root-transformed 218 

top and subsoil SOC stock datasets. The starting set of explanatory variables included 219 

environmental, pedological and agricultural drivers. Once the LR model had been 220 

computed,  variance inflation factors (VIFs) of the continuous explanatory variables 221 

included in the model (vif function in the “car” R package) were calculated to evaluate the 222 

absence of collinearity, before proceeding to eliminate those variables whose VIF was 223 

greater than 2 (i.e. moderately to highly correlated). Next,  a backward stepwise model 224 

selection strategy with all the remaining variables for both top and subsoil datasets was 225 

performed, choosing the model with the lowest Akaike information criterion (stepAIC 226 

function of the “MASS” R package). 227 
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5. The residuals at every spatial location from the resulting best LR models were then 228 

determined and the corresponding Moran index was calculated (Rangel et al., 2006) 229 

using ArcGIS 10.3 for both top and subsoil datasets. 230 

6. Once the Moran index analysis confirmed the presence of spatial correlation of residuals 231 

(For topsoil database, Moran’s Index= 0.138; z-score=12.173; p<0.01 and, for subsoil 232 

database, Moran’s Index=0.095; z-score=4.438; p<0.01), their spatial correlation 233 

structure was explicitly modelled with the aid of a General Least Squares (GLS) analysis 234 

(gls function of the “nlme” R package). GLS is a regression technique by which the spatial 235 

component of the residual term is explicitly modelled in the variance-covariance matrix 236 

using parametric functions (Gaussian, exponential, lineal, etc.). In our case, GLS included 237 

X-Y site coordinates in the random-effect part of the model. Prior to the GLS calculations, 238 

data sets were partitioned into training and test subsets, containing 70% and 30% of data 239 

points, respectively. Next,  backward stepwise model selection was performed, starting 240 

once again from a full model and employing the training subset for the calculations of 241 

parameter estimates. We instructed the backward stepwise procedure to remove only 242 

one or two variables at each step, due to limitations in available computing power. The 243 

criterion for model selection was mean square error (MSE), so the lower the MSE 244 

between the test data points and their corresponding predicted values (the latter 245 

determined with the parameter estimates from the model selection step), the better the 246 

model. For the spatial covariance part of the GLS model,  an exponential correlation 247 

structure was chosen, which satisfactorily accounted for distance-decay effects. With the 248 

help of GLS outputs, the proportional contribution that each remaining explanatory 249 

variable made to the R2 coefficient was calculated. In addition,  the significance of each 250 

predictor based on the p-value of the ANOVA of best-fitting model and the relative 251 

importance of variables (RIV) in explaining variation in SOC stocks were assessed. In 252 

order to rank controlling factors of SOC stocks, the RIV of each variable was assessed 253 
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as the % of the difference between the R2 from the best-fitting model and the R2 from the 254 

model removing each variable.  255 

7. To further understand how the relationship between SOC stock and the explanatory 256 

variables changes spatially,  a geographically weighted regression (GWR; Fotheringham 257 

& Oshan; 2016) was also performed. The GWR technique can be used to show the spatial 258 

variation of parameter estimates, which are determined locally rather than globally with a 259 

weighted least squares scheme. These weights are specified so that closer points have 260 

more influence on the determination of a local parameter than points located further away. 261 

Considering that soil samples in the present study were not regularly distributed in space, 262 

as a weighting function  an adaptive spatial Gaussian kernel with a dynamically 263 

determined bandwidth was employed. GWR was performed using the same explanatory 264 

variables selected previously with the GLS model selection procedure, but this time all 265 

data points were included (i.e. without splitting the dataset into training and test subsets). 266 

Maps of continuous spatial distribution of a) GWR local estimates, b) local R2 and c) 267 

residuals were generated by kriging interpolation to explore varying spatial relationships 268 

between SOC stock values and the main drivers, as well as to evaluate model 269 

performance at local and global scales. 270 

To evaluate model performance in predicting SOC stock content,  the global coefficient 271 

of determination (R2), Root Mean Square Error (RMSE) and Mean Error (ME) were calculated. 272 

These indices were evaluated with the test data set for GLS models and with a complete data 273 

set for GWR. 274 

 275 

2.5 Mapping SOC stocks  276 

Digital mapping of SOC stocks was performed by applying a regression (GLS) of SOC stocks on 277 

spatial data of the environmental variables considered as predictors. Due to problems of 278 

unavailability of good spatial resolution for several covariates, such as soil properties, the 279 
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covariates used in the GLS models for mapping (hereafter, GLSmap) differed from those 280 

employed in the GLS models used to assess the predictive power of each driver, as explained 281 

in step 6 of the previous section. Therefore, GLS models had to be re-fitted based on a new set 282 

of covariates. To apply the GLSmap regression equation,  a set of map layers in raster format 283 

was used. Spatial data on agricultural covariates (categorical) was converted to dummy rasters 284 

(values of either 1 or 0 showing presence or absence of each category, respectively). Spatial 285 

data on climatic variables was obtained from the Digital Climatic Atlas of Catalonia and altitude 286 

data was drawn from the DEM of Catalonia (same rasters described in Appendix B of extended 287 

Material and Methods). Prediction was performed by applying map algebra (through the GLSmap 288 

regression equation and the set of covariates maps) using the GIS tool Raster calculator of 289 

ArcGIS 10.3.1 (ESRI, 2011). Prediction at the pixel level needed to be corrected by adding kriged 290 

residuals (differences between measured and predicted SOC stock at observed locations) from 291 

the GLS fit, in order to correct spatial correlation of residuals following Ninyerola et al. (2000). 292 

This procedure is also known as Regression Kriging in geostatistics (Chen et al., 2018).  293 

The final corrected SOC stock maps were back-transformed from square-root in order to 294 

yield SOC stock values in kg/m2 units. Spatial resolution was set to 180×180 m, as used in the 295 

climatic maps. 296 

 297 

3. Results 298 

3.1 Descriptive statistical and depth profile SOC stock distribution 299 

Mean SOC stock values were significantly different (p<0.05) for each categorical variable at the 300 

topsoil and subsoil (Table 1). Rice showed the highest mean SOC stock at the top and subsoil. 301 

Grazed pastures showed the highest mean SOC stock at the topsoil, but the lowest at the subsoil. 302 

Vineyard soils showed the lowest value in the topsoil. Irrigated cropland presented higher SOC 303 

stocks than rainfed at both top and subsoil. Poor profile drainage were associated to  higher SOC 304 
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stocks in both top and subsoil. With respect to textural classes, higher SOC values were linked 305 

to finer textures. Mollisols had the highest SOC stocks at the topsoil, while Entisols had the 306 

highest SOC stocks at the subsoil. Averaged values of SOC stock for agricultural land use in soil 307 

up to a depth of 1 m were ~10 kg/m2, ranging from 9.2 to 14.7 kg/m2, corresponding to vineyard 308 

and rice agricultural land use categories, respectively. For all categories, more than 50% of the 309 

total stock relative to 1 m depth was located in the subsoil (30-100 cm), except for pastures 310 

(especially grazed pasture), excessive drainages, Mollisols and Aridisols (Table 1). 311 

 312 

3.2 GLS and GWR modelling, model evaluation and relative importance of explanatory 313 

variables 314 

3.2.1 GLS model performance and relative importance of variables 315 

GLS models accounted for 27% and 20% of variations of SOC stocks at the top and subsoil, 316 

respectively (Table 2). The negative values of Mean Error (ME) obtained imply that all the 317 

prediction models were negatively unbiased, suggesting under prediction. Like R2, RMSE was 318 

lower in the topsoil than in the subsoil. On the one hand, in the GLS model for topsoil significant 319 

coefficients of SOC stock (square-root transformed) were found for agricultural land use, water 320 

management and textural class. Climate variable MAP/MAT showed a positive relationship with 321 

SOC stock. However, clay content presented a significant negative coefficient of SOC stock 322 

(square-root transformed). In Figure A.9 (a) we can see how clay content and SOC stock 323 

(square-root transformed) at the topsoil were positively correlated up to ~30 kg clay /m2, and 324 

from this point on the relationship presented a slightly negative trend strongly conditioned by 325 

higher clay content, making the general trend negative. A drainage factor was not significant in 326 

the model, and soil type and soil depth were variables previously dismissed in the backward 327 

stepwise performance. On the other hand, the GLS model for subsoil showed significant 328 

coefficients for agricultural land use, excessive drainage and soil type (Table 2). Clay content 329 

and depth profiles at the subsoil showed a significant positive coefficient of SOC stock (square-330 
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root transformed). Water management and MAP/MAT were previously excluded in the backward 331 

stepwise performance. 332 

The RIV for SOC stocks differed between top and subsoil (Fig. 4). In order to explain topsoil 333 

SOC stocks in the GLS model, textural class was the most important variable, followed by 334 

agricultural land use, MAP/MAT ratio, clay content, and finally water management. Soil 335 

properties explained 39% of topsoil SOC stock variability, land use and management 18%, and 336 

climate 15%. In the subsoil, the depth of the profile had the strongest influence on SOC stocks, 337 

followed by soil type, textural class, clay content, agricultural land use and finally drainage. Thus, 338 

soil properties explain more than 44% of SOC stock variability at the subsoil, whereas land use 339 

accounts for just under 6%. 340 

 341 

3.2.2 GWR model performance 342 

GWR global coefficients of SOC stock (square-root transformed) and model evaluation (Table 343 

S2) were in line with GLS performance (Table 2). GWR coefficients of variables ranged from 344 

negative to positive, indicating the existence of spatially varying relationships between SOC 345 

stock and their explanatory variables (coefficients from the dynamic variables at the topsoil in 346 

Fig. 5 and coefficients from the rest of the explanatory variables can be found in SM). GLS and 347 

GWR global estimates for the MAP/MAT variable presented a positive sign, since the 348 

combination of high precipitation and low temperatures is related with high SOC stocks. Positive 349 

MAP/MAT coefficients at the topsoil (Fig. 5a) were distributed right across the study area, 350 

excluding the Catalan Central Depression, where negative coefficients were obtained. The 351 

obvious reason is that, in these areas, irrigation countervails drought, and high levels of plant 352 

production are attained. Although local estimates for rainfed crops (Fig.5b) were negative at the 353 

topsoil throughout the study area, the intensity of the relationships was not constant. Rainfed 354 

crops presented lower SOC stocks than irrigated right across the study area, with a more marked 355 

difference in the Catalan Central Depression. GWR coefficients for all the agricultural land use 356 
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categories showed a similar spatial pattern at the topsoil (Fig. 5c and Fig. A.3 from b to g): they 357 

were negative all over Catalonia, showing the greatest magnitude in the East central areas. 358 

The remaining variable coefficients for top and subsoil varied spatially in magnitude and even 359 

sign as well (some examples in Fig. A.3 and Fig. A.5). Higher local R2 values were observed in 360 

northern areas for the topsoil GWR model (Fig. A.4a). In contrast to topsoil, higher local R2 values 361 

were observed in southern zones for subsoil GWR local models (Fig. A.6a). GWR bandwidth 362 

sizes (km) were smaller for topsoil (Fig. A.4d) than subsoil (Fig. A.6d) at certain locations due to 363 

sample density (small bandwidth size was correlated to high sample density). GWR residuals 364 

were randomly spatially distributed from positive (blue colour) to negative (red colour) values at 365 

the top (Fig. A.4b) and subsoil (Fig. A.6b).  366 

 367 

3.3   Mapping SOC stocks: a baseline map 368 

Coefficients of the GLSmap model were used at the pixel level (180 x 180 m) to predict SOC 369 

stocks (Table A.3). Explanatory variables used in the GLSmap model, limited by mapping 370 

availability and showing the best-fitting model, were: agricultural land use, water management, 371 

aridity index and altitude. Correlation coefficients of variables in the GLSmap model matched 372 

with those obtained from the GLS model used to assess the predictive power of covariates. The 373 

correlation coefficient (R2) for the topsoil GLSmap model is 0.18. The agricultural soils of northern 374 

areas (Pyrenees and Pre-Pyrenees) have relatively higher SOC stocks (> 6.0 kg/m2) than the 375 

rest of the region (Figure 6). Paddy fields, found in two areas (Ebro Delta and Empordà plain), 376 

stood out with high SOC stocks. Moderate SOC stocks (4.0-5.5 kg/m2) were located in the Ebro 377 

valley, southern and north-eastern regions, representing almost 84% of the study area. Soils with 378 

lower SOC stocks (< 4.0 kg/m2) were concentrated along the Pre-Coastal Depression (from 379 

central to south), coinciding with some important vineyard and olive growing regions. Residuals 380 

of the GLSmap model for SOC stocks at the topsoil showed spatial heterogeneity: negative (red 381 



16 
 

colour) and positive (green colour) residuals, under and over predicting SOC stocks, 382 

respectively, were observed (Fig. A.7). 383 

Averaged SOC stock values in the topsoil derived from mapping of Catalonia agriculture 384 

ranged from 0.99 to 13.98 kg/m2 and the mean value was 4.88 ± 0.89 kg/m2. Estimation of 385 

absolute values of SOC stocks for the topsoil total 47.89 Tg for all the agricultural land in the 386 

study area (Table 3). Most agricultural land uses (arable land, orchard, olive and abandoned 387 

land) presented a gaussian-like distribution of SOC stock classes (i.e. symmetric histograms with 388 

most of the surface bunched in the middle SOC stock classes: from 4 to 5.5 kg/m2), unlike other 389 

agricultural land uses that showed left- (rice, pastures and grazed pastures) and right- (vineyard) 390 

skewed histograms (Fig. A.8). The GLSmap model for subsoil (data not shown) indicated a 391 

negligible explained variability (R2= 0.066), and consequently mapping was dismissed. 392 

 393 

4. Discussion 394 

4.1 Characterizing agricultural SOC stocks and its vertical distribution up to 1m 395 

The mean SOC stock values obtained from both data sets (Table 1) were in line with the previous 396 

SOC characterizations or estimations for agricultural soils down to 30 cm in other Mediterranean 397 

(Chiti et al., 2012; Rodriguez-Martin et al., 2016; Farina et al., 2017) and non-Mediterranean 398 

(Martin et al., 2011; Luo et al., 2013; Liu et al., 2015) regions.  399 

Mean SOC stock values differed substantially from those drawn from studies in non-400 

Mediterranean agricultural systems and other land uses. Higher values were found in agricultural 401 

soils at northern or tropical latitudes (Neufeldt, 2005; Adhikari et al., 2014; Bonfatti et al., 2016). 402 

Lower SOC stock values have been published for agricultural soils in southern, semi-arid or arid 403 

regions (Albaladejo et al., 2013; Hoyle et al., 2016; Chakan et al., 2017; Muñoz-Rojas et al., 404 

2017;  Schillaci et al., 2017a). Likewise, lower SOC stock values were estimated in Spanish soils 405 

in forest, shrubland and grassland systems estimated at 1 m depth by Doblas-Miranda et al. 406 

(2013), perhaps because these land uses are mainly encountered on shallower soils or steep 407 

slopes, whereas deeper soils and gentle slopes are preferable used for cultivated fields 408 
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(Albaladejo et al., 2013; Lacoste et al., 2014) that have a greater capacity to store SOC. 409 

Notwithstanding this, when only the first 30 cm were considered, higher mean values were found 410 

under forests, shrublands and grasslands in Spain (Rodriguez-Martin et al., 2016). 411 

The present study estimated that more than 50% of the total stock to 1 m depth is located in 412 

the subsoil (Table 1). These results are similar to those for soils in other climatically different 413 

regions like Iran (Chakan et al., 2017) and NW France (Lacoste et al., 2014), but are in contrast 414 

to findings for northern latitudes, where SOC stocks are greater in topsoil (Neufeldt, 2005; Kumar 415 

et al., 2013; Adhikari et al., 2014). It is commonly found that soil C generally decreases 416 

exponentially with soil depth ( Albaladejo et al., 2013; Kumar et al., 2013; Hobley and Wilson, 417 

2016).  418 

 419 

4.2 Modelling SOC stocks  420 

 The percentage of explained variance obtained by GLS models in this study ranged from 20% 421 

to 27%, corresponding to sub and topsoil models, respectively. Higher data density from topsoil 422 

might have a positive effect on modelling performance (Adhikari et al., 2014). R2 for GLS models 423 

used to map SOC stocks in the topsoil was lower (R2=0.18), because several drivers of SOC 424 

stock, such as soil properties, could not finally be included due to unavailability of good spatial 425 

resolution (Table A.3). In addition, for the very same reason, R2 of GLS used to map SOC in the 426 

subsoil (data not shown) was negligible (R2= 0.016) and mapping SOC stocks at the subsoil was 427 

finally dismissed. Although R2 values obtained may seem low, values of R2 higher than 0.7 are 428 

in fact unusual, and values <0.5 are common in soil attribute prediction. Moreover, R2 values 429 

usually decrease with depth (see Table 4 and Table A.4; Adhikari et al., 2014; Chakan et al., 430 

2017). 431 

The R2 values obtained could be associated with heterogeneity of spatial data density or 432 

other factors not tested due to data unavailability. Higher R2 values have been found when 433 

different land uses (forest or scrubland) were modelled (Albaladejo et al., 2013).  434 
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In order to deal with spatial correlation of residuals, two models were performed: GLS and 435 

GWR. Both models are considered robust and have been widely used in statistical literature for 436 

decades (Wang & Tenhunen, 2005; Rangel et al., 2006; Luo et al., 2017; Peng et al., 2017). See 437 

more references compiled in Table 4 and Table A.4). Here  similar results using both 438 

methodological approaches were obtained (Table 2 and Table A.2).      439 

 440 

4.3 Conclusive factors affecting agricultural SOC stocks  441 

The main drivers of SOC stocks depend on the position in the soil profile (topsoil versus subsoil). 442 

At the topsoil, the main drivers were textural class, agricultural land use and MAP/MAT. Soil 443 

properties become more relevant with increasing depth. At the subsoil, the agricultural land use 444 

category was still important, but MAP/MAT ratio and water management were no longer 445 

considered important SOC drivers at depth. In line with the present study findings, some authors 446 

(Albaladejo et al., 2013; Bonfatti et al., 2016; Armas et al., 2017; Chen et al., 2018) state that 447 

variable importance varies with depth. Climate, land use and management are likely to have a 448 

strong influence on SOC stocks at the topsoil, where these drivers directly impact. However, in 449 

the subsoil physico-chemical soil attributes are expected to be more crucial as drivers of SOC 450 

stocks than environmental factors. The importance of variables in explaining SOC stocks found 451 

here concurs with many studies (see Table 4 and Table A.4) where soil properties, climate and 452 

land use and management are seen to be the key factors. Several studies have highlighted the 453 

importance of climate in predicting SOC stocks (see Table 4 and Table A.4). High temperatures 454 

are related to metabolic activity stimulation of both soil microbiota and fauna, thus inducing 455 

decomposition of organic matter, while high annual precipitation relates to high net primary 456 

productivity (NPP) of plants, and hence to high inputs of organic debris to soil. C inputs are mainly 457 

limited by NPP, which depends on climate, and particularly, on the limitations in soil water and 458 

nutrients availability (Rabbi et al., 2015). Some studies in semi-arid Australia show that climate 459 

and soil properties better explain SOC variability compared with land use and management 460 

(Rabbi et al., 2015; Hoyle et al., 2016). Conversely, Fantappie et al. (2011) and recently Schillaci 461 
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et al. (2017b) show that changes in land use and management seem to have played a major role 462 

in the variations of SOC content in Italy and Sicily, respectively. 463 

Some authors (Jobbagy & Jackson, 2000) have pointed out that the importance of soil 464 

properties such as clay on SOC stocks increases with soil depth, playing a larger role than 465 

climate in deep layers. Given the protective role of clay,  a positive impact on SOC stocks at 466 

modelling was expected. The results (Fig. A.9) show that such a positive relationship occurs only 467 

up to a given limit: about 30 kg/m2 of clay in the topsoil, and about 125 kg/m2 in the subsoil. From 468 

this limit on, increasing clay abundance does not result in increased SOC stocks. Indeed, a 469 

negative trend was detected in the topsoil: with very high clay stocks, SOC stocks tend to 470 

decrease. In fact, clay has a dual effect on SOC stocks (Rovira et al., 2010): positive (the 471 

protective effect on soil organic matter and the positive effect on soil water holding capacity) and 472 

negative (high amounts of clay make penetration by roots difficult, and available water for plants 473 

may be low). 474 

 475 

4.4 Spatial variability of the effect of explanatory variables on SOC Stocks  476 

The results show how at the topsoil the GWR coefficients for the climate variable MAP/MAT 477 

presented a negative counterintuitive sign in an agricultural area irrigated since the mid-19th 478 

century, the Ebro Valley (Fig. 5a). This negative relationship could be attributed to higher SOC 479 

stocks than expected in an area characterized by low precipitation and high temperatures. 480 

Possibly the impact of irrigation on the area could mask climatic effects. Rainfed coefficients 481 

were negatively stronger (Fig. 5b) at the topsoil, but only in those areas where aridity (Fig. A.1, 482 

d) is more pronounced, indicating a stronger positive relationship between irrigation and SOC 483 

stocks in these semi-arid areas. Agricultural land use coefficients were negatively stronger in the 484 

middle region of Catalonia for all cropland types (Fig. 5c and Fig. A.6 from b to g), demonstrating 485 

that in this area alone SOC stocks present lower values regardless of the cropland category. 486 
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The effect of each factor on SOC stocks at top and subsoil between regions was different 487 

(Fig. 5 and Fig. A.3 and A.5). Spatial variability of GWR coefficients showed how main drivers in 488 

certain locations have lesser impact, leading to a loss of importance with respect to others. This 489 

implies that when regional mitigation strategies are formulated, account should be taken of the 490 

different impact of drivers at the local scale. 491 

 492 

4.6 Mapping: a new baseline 493 

SOC stocks were modelled and predicted assuming a steady state during the sampling period, 494 

in order that this map may be used as a baseline in the assessment of possible future spatio-495 

temporal scenarios. Previous studies have succeeded in mapping SOC stocks at the topsoil over 496 

the study area. Using a process-based model, Alvaro-Fuentes et al. (2011) mapped SOC stocks 497 

in a wider area of NE Spain, showing values relatively far from ours in some land uses such as 498 

vineyard, olives or orchards. Notwithstanding all this, similar results  have also been shown for 499 

annual and woody crops by other studies in Spain using geostatistical analysis (Rodriguez-Martin 500 

et al., 2016). The resulting SOC stocks baseline map in the present study offers improvements 501 

regarding previous baselines covering the study area. SOC stocks (topsoil) were mapped 502 

specifically for agricultural soils in Catalonia based on a high-density sampling data from more 503 

than 2000 spatially well-distributed agricultural soil profiles, using a statistical modelling approach 504 

and considering the main SOC drivers. Moreover, a higher map resolution for the study area was 505 

achieved, compared to existing baselines. 506 

According to Minasny et al. (2017), SOC stocks fluctuate with latitude, insofar as they are greater 507 

at higher latitudes and humid tropics and lower in the mid-latitudes. The mean SOC stock value 508 

for agriculture in the study area (4.88 kg/m2) was similar to the values published for countries at 509 

similar latitudes.  510 

 511 

4.7 Limitations and mapping uncertainties 512 
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In addition to the natural variability of SOC stocks, a number of different reasons could explain 513 

the low variance shown by models. 514 

 Accuracy of data for this purpose is limited. First, stoniness was estimated visually in field 515 

sampling and bulk density had to be estimated using expert-derived  pedotransfer function from 516 

literature. Second, agricultural variables presented information gaps or generalizations that had 517 

to be estimated. Third, soil legacy data was sampled from 1980 to 2015, which could challenge 518 

the assumption that SOC stocks remained stable over this 35-year period, avoiding any 519 

consideration of possible climate change effects during this time. Unfortunately, due to 520 

geographical pattern of sampling, it was not possible to test the effect of sampling date on SOC 521 

stocks. 522 

Another limitation was the lack of information related to known factors controlling SOC stocks in 523 

terms of physical or chemical C protection (Fe and Al oxides, salinity, hydromorphy, pH or clay 524 

minerals), or in terms of soil disturbance, soil protection and C inputs, such as current and 525 

historical agricultural management practices. Finally, although soil samples are well distributed 526 

right across Catalan agriculture, some agricultural areas are poorly represented. Mapping 527 

uncertainties are associated with SOC stock and driver estimations used when modelling. 528 

Modelling prediction error and unquantified uncertainties associated with some covariate layers 529 

(in some cases, rasterized versions of polygonal mapping) used to map SOC stocks should also 530 

be considered. Residuals’ spatial pattern of the GLS model used for mapping SOC stocks at the 531 

topsoil (Fig. A.7) evidenced regions presenting under- and over-predictions quite consistently. 532 

These regions with higher or lower residuals (under- or over-predictions) need further attention. 533 

 534 

4.8 Recommendations and future research  535 

The results of the present study indicate that data quality must be improved to enhance 536 

modelling performance and predictions, and to reduce uncertainty in the output map. Future soil 537 

sampling efforts should focus on the acquisition of better SOC  data, as well as on the collection 538 
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of as many potential explanatory variables as possible (bulk density, proportion of coarse 539 

particles, detailed soil analytics, exact geographical position, detailed land use, past and current 540 

agricultural management practices, etc.). Consequently, further work must be done to 541 

understand the role of abiotic, biotic and human factors affecting spatial distribution of SOC 542 

stocks not considered here, and to build layers representing SOC stock predictors at a 543 

reasonably good spatial resolution, especially soil properties. 544 

The resultant outputs of this study would assist in the analysis of different scenarios that help 545 

to formulate targeted climate change mitigation and adaptation policies under Mediterranean 546 

conditions. In fact, this study sets the baseline for studies exploring future climate change and 547 

land use or agriculture management scenarios, such as those published by Yigini & Panagos 548 

(2016), Lugato et al. (2014b) or Zhang et al. (2016).  549 

 550 

5. Conclusions  551 

The present study found the most important drivers of SOC stocks to be texture, climate and 552 

agricultural land use in the topsoil, and soil properties in the subsoil layer, findings that are 553 

consistent with previous studies. Topsoil offers management opportunities for C sequestration, 554 

since SOC stocks in this soil layer are mainly affected by dynamic variables. The fact that the 555 

effect of controlling factors on SOC stocks vary spatially implies that mitigation strategies should 556 

be adjusted at the local scale. Based on the available data,  a modelled baseline map of SOC 557 

stocks in the topsoil (0-30 cm) for Catalan agriculture based on legacy data was produced and 558 

provided, improving spatial estimates of regional terrestrial carbon balances. Absolute and mean 559 

values of SOC stocks in soils under agriculture in Catalonia down to 30 cm are 47.89 Tg and 560 

4.88 kg/m2, respectively. This study represents a baseline framework with which to design 561 

climate change mitigation and adaptation strategies based on identifying high and low 562 

vulnerability areas and on exploring C sequestration potentials of Mediterranean agricultural 563 

soils. 564 

 565 
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