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Abstract. We present a global, locally resolved life cycle assessment (LCA) model to assess 

the potential effects on soil quality due to the accumulation of water-soluble salts in the 

agricultural soil profile, allowing differentiation between agricultural practices. Using 

globally available soil and climate information and crop specific salt tolerances, the model 

quantifies the negative implications that salts in irrigation water have on soil quality, in terms 

of change in the soil electrical conductivity and the corresponding change in the amount of 

crops that can be grown at increasing soil salinity levels. To facilitate the use of the model, 

we provide a life cycle inventory tool with information on salts emitted with irrigation water 

per country and 160 crops. Global average soil susceptibility is 0.19 dS/m per g salt in 1 m3 

soil and the average resulting relative crop diversity loss is 5.7*10-02 per g salt in 1 m3 soil. 

These average values vary tangibly as a function of the location. In most humid regions 

worldwide the characterisation factor is null, showing that in these cases soil salinisation due 
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to irrigation does not contribute to soil degradation. We displayed how to apply the model 

with a case study. The model serves for guiding decision-making processes towards 

improving the sustainability of irrigated agriculture.  
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⦁ Introduction 

Soil resources are under high stress worldwide, due in large part to improper agricultural 

practices.1 The consequence of soil degradation is a decrease in the complexity of terrestrial 

ecosystems and the loss of productivity on the long-term.2,3 According to the Global 

Assessment of Soil Degradation (GLASOD),4 soil salinisation is considered to be the third 

major human-induced soil degradation process (70 Mha affected) after soil erosion (1300 

Mha affected) and loss of nutrients (130 Mha affected). GLASOD was conducted thirty years 

ago, but it remains the only global harmonised effort to estimate the extent of soil 

degradation.3

Soil salinisation is the physical (i.e. soil structure) and chemical deterioration of the root zone 

as a result of salt accumulation. Depending on the salts (ions) involved and the soil pH, the 

problems affecting soil and the remediation techniques are different,5,6 putting in evidence 

the complexity of the whole problem. Soil salinisation becomes a concern for agriculture 

when the accumulation of salt in soil reaches a level that affects soil properties and crop 
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production in the long term. In extreme cases, farmers have to abandon their fields and 

convert forest land into agricultural land. This transformation leads to further soil 

degradation processes and adds to the pressure on climate due to the release of carbon stored 

in trees and soil. Moreover, the abandoned, degraded, agricultural land has a low spontaneous 

renaturalisation potential. 

There are different mechanisms that trigger soil salinisation. One of the main anthropogenic 

reasons is the combined use of poor quality irrigation water and improper agricultural 

practices.1 Mismanaged irrigation affects 35 Mha worldwide, i.e. 10% of total irrigated land,7

and every year between 0.5 - 1 Mha add to the count of soil “lost” due to salinisation and 

waterlogging.8 Irrigated areas in drylands (i.e. areas with an annual precipitation-to-potential 

evapotranspiration ratio lower than 0.65) are particularly prone to soil salinisation, because 

salt builds up more easily in a soil with little rainfall and high evapotranspiration.9 Moreover, 

the odds are high that the problem will aggravate in the near future due to the spread of arid 

areas as a consequence of climate change10 and the overexploitation of agricultural lands to 

produce more food, feed and fibres. 

Salts accumulate in soil because plants take up water selectively, leaving salts behind. 

Irrigation water contains a mixture of salts, and irrigated soils will contain a similar mix but 

at higher concentrations if no measures are taken to avoid salt deposition. Principally, there 

are two complementary measures to avoid that salts build up in soil, namely leaching and 

draining. 1) With leaching, a portion of the salts from irrigation that accumulates in soil is 

flushed below the rooting depth if more water than consumed by the crop is added to the soil. 

Leaching can happen naturally (rainfall) or via irrigation water. High leaching (e.g. 50% 

more water than consumed by the crop) results in less salt accumulation than low leaching 

(e.g. only 5% more water than consumed by the crop) because more salts are washed away.  

The amount of leaching required depends on the quantity of salts in the water: with good 

quality water, the losses of the irrigation system will in general be sufficient to leach the salts 

out. Whereas with poor quality water larger amounts of water will be needed. 2) Drainage 
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systems can collect the fraction of salts and water leached from the soil and dispose it in 

water collectors through a natural or artificial outlet. Poor drainage increases salinity of the 

aquifer underneath and rises the water table, with a risk of salt redeposition in soil via 

capillary rise. In short, the parameters involved in the flushing of salts from the soil profile 

are climate, water quality, amount of irrigation water and drainage.

Two measures of salinity are used: electrical conductivity (EC) and total dissolved solids 

(TDS) concentration. EC represents salt activity and is measured in decisiemens/m (dS/m) at 

25°C. TDS includes all inorganic and organic dissociated anions and cations as well as 

undissociated dissolved species. EC depends on the salinity level (i.e. TDS, in mg/l) and salt 

composition.11 Proxy conversion factors are used in the absence of more detailed water 

quality analysis, usually TDS (mg/l)  = 640 ((mg×m)/(l/dS)) × EC (dS/m) (for EC<5 dS/m) 

and TDS (mg/l)  = 800 ((mg×m)/(l/dS)) × EC  (dS/m) (for EC >5 dS/m).12

Despite the hazard that irrigation-induced soil salinisation entails for agricultural systems, to 

date this environmental problem cannot be evaluated in large-scale quantitative sustainability 

assessment methods, such as life cycle assessment (LCA). LCA is a tool to help decision-

makers identify the solution that best supports sustainable development by applying a system 

perspective. This means that all relevant impacts, among which irrigation-induced soil 

salinisation in case of agricultural activities, must be quantified.13 Two problems hinder the 

assessment of soil salinisation with irrigation water in LCA. First, commonly used life cycle 

inventory (LCI) databases such as ecoinvent14 lack information on salts emissions to soils. 

The second problem is that no global, regionalised life cycle impact assessment (LCIA) 

model quantifying the environmental impacts of a salt emission has been developed. 

Regionalisation means spatial differentiation and is a useful quality in a model for soil 

salinisation because soil properties vary widely, and consequently the environmental impacts 

of the salt emission. There are two soil salinisation LCIA models for assessing impacts of 

salts added with irrigation water, but both have important shortcomings that limit their 

operationalisation. The model of Feitz and Lundie15 is based on the chemical composition of 
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the irrigation water used, but the authors did not provide characterisation factors (CFs). 

Instead, CFs have to be calculated by the LCA practitioner based on a very detailed quality 

analysis of the irrigation water used, which is usually unfeasible due to data and time 

constraints. Leske and Buckley16–18 developed CFs that quantify the impact of a salt emission 

into different possible release compartments (namely atmosphere, surface water, natural 

surface and agricultural surface). To compute CFs, the authors built a multimedia model 

representing the hydrology with salt transport and deposition processes in South-Africa. 

Despite its environmental relevance, its geographical validity is limited to South-Africa and 

the use in other countries is not recommended. Payen et al.19 did a thorough review of 

salinisation impacts in LCA and provided recommendations on the key parameters to include 

in LCA models for irrigation-induced soil salinisation, but without operationalisation. 

The goal of this research was to overcome current limitations in assessing impacts of salt 

emissions with irrigation water in LCA by developing a fully operational model that is 1) 

able to assess irrigation-induced soil salinisation impacts on a global level in a spatially-

explicit manner; and that is 2) able to differentiate between salinisation impacts of different 

agricultural practices, which is useful for agricultural eco-innovation purposes. These 

objectives encompass methodological developments at both the LCI and LCIA steps as 

detailed in section 2. We applied the model to a hypothetical but realistic case study on rice 

cultivation for illustrative purposes. The soil salinisation model has been developed to be 

integrated in LCA, but it can also be used as a standalone environmental footprint tool. 

⦁ Materials and Methods

⦁ Model overview 

Figure 1 provides an overview of the framework that was followed to model impacts of salt 

emissions with irrigation water on the long-term soil quality, measured via the increase of 

soil electrical conductivity and the corresponding reduction in the amount of crops that can 
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be grown at increasing soil salinity levels. To model the impacts, first the additional mass of 

salt in soil after a salt emission (i.e. salts not flushed from soil) is modelled. This modelling 

step is operationalised via a calculator that we called SaltLCI (see section 2.2), which is 

located in the cause-effect chain of Figure 1 on the boundary between the inventory data 

collection and the impact assessment phase (the rationale to do so is discussed in section 4.1). 

The parameters considered at the LCI step and included in the SaltLCI tool are the 

agricultural management parameters: salts in irrigation water, amount of irrigation water, 

leaching and drainage; and as climate parameter, the local aridity index. The result of the 

SaltLCI tool is an LCI elementary flow in grams of salt from the emission added to soil per 

functional unit (FU). A FU describes the function(s) provided by the analysed system. All the 

elementary flows of an LCA study must be quantitatively related to the FU. One of the model 

inputs to the SaltLCI tool is the location where the activity takes place, which is used for 

identifying the appropriate regional-dependent CF in the LCIA step. The CFs reflect, at 

midpoint level, the relative local sensitivity of a soil to a salt emission, depending on soil and 

climate properties. At damage level, they reflect the long-term crop diversity loss, which 

depends on both soil and climate properties and crop sensitivity to salinity. Midpoint 

indicators are at an intermediate position in the environmental causality chain depicted in 

Figure 1 linking salt emissions to the ultimate damage on soil quality and the services it 

provides. Indicators at damage level measure the final damage on the area of protection 

(AoP) and are therefore more relevant from an environmental protection viewpoint. The AoP, 

which identifies what we wish to protect, is called resources and ecosystem services. This 

AoP traditionally covers natural resources (e.g. fossil, mineral, water resources) and has 

recently been expanded to ecosystem services.20,21 Multiplying the elementary flow of the 

LCI (e.g. from  SaltLCI) and CFs (reported in this article), the user can calculate potential 

impacts on soil salinisation and on crop diversity loss due to a salt emission with irrigation 

water. All geospatial processing was carried out using ArcGIS Desktop.22,23
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Figure 1. Schematic overview of the procedure followed to model impacts of salt emissions 

on soil degradation. Soil salinisation and crop diversity are used as indicators to measure 

impacts on soil quality and on its capacity to provide ecosystem services. FU: functional unit, 

i.e. reference unit in an LCA study. 

⦁ SaltLCI tool 

The LCA practitioner does not usually know the mass of salts emitted and can neither 

retrieve this information from LCI databases. This limitation was overcome by developing a 

tiered (i.e. multi-level) calculation system as done by Stoessel et al.24, which informs about 

the salt emitted with irrigation water and the fraction added to soil adapting its data 

requirements to the amount of data the user has. 
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SaltLCI is an excel tool and is available as Supporting Information (SI). The tool is organised 

in three tiers. Tier 1 requires less input data, while moving to higher tiers (tier 2 and tier 3) 

necessitates more effort in LCI data collection but improves accuracy and confidence in the 

inventory and hence in the final indicator result. Thus, whenever possible, the use of tier 3 

should be privileged. The SaltLCI output (elementary flow) is the mass of salts added to the 

soil profile at equilibrium per FU (see further details in section S1, Equation S8). The output 

is given per crop yield (gram salts from the emission added to soil/kg crop), that is, yield is 

used as FU. Tier 1 provides average output values per country and crop and its use is 

recommended only for LCA studies of products with food ingredients without focus on the 

agricultural stage (e.g. LCA of ketchup, where the LCA user only knows that tomatoes used 

in the ketchup recipe come from Greece). Tier 2 allows for tailored scenarios at country scale 

and is useful for cases where the LCA user has a fairly good knowledge of the agricultural 

stage (e.g. the user knows the irrigation technology used to grow tomatoes in Greece for 

ketchup production). Finally, tier 3 is useful for the eco-innovation of agricultural systems, 

allowing the comparison of the amount of salts added to soil as a function of the agricultural 

practices applied (e.g. different leaching fractions and irrigation water qualities). Input data 

required at each tier, calculation steps and data sources used to calculate salt addition to soil 

with each tier are detailed in section S1.

⦁ Life cycle impact assessment: influence of the irrigation frequency

Salts are unevenly distributed in different soil depths. We assumed that the additional mass 

of salts added to the soil distribute instantaneously and homogeneously in the entire profile, 

which results in a new equilibrium via linearly increasing concentrations from the old 

equilibrium (also referred to as background) in each soil layer, as per state of the art in LCIA. 

In irrigated lands where the movement of water through soil is not a limiting factor, salts tend 

to accumulate in deeper soil layers due to the downward movement of water with leached 

salts. Crops take up water from the upper, less saline soil layers if the soil is full of water, 
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which happens when irrigation events are frequent (e.g. drip, sprinkler). As crops use water 

and the time interval between irrigations is extended (e.g. furrow, gravity), the upper root 

zone becomes increasingly depleted and the layers of most readily available water change 

towards lower, more saline layers. A water extraction pattern develops as a function of the 

frequency of irrigation events, which also determines the relative contribution of every soil 

layer to the average soil salinity and to the effects of salts on crop growth. Accordingly, two 

distinct soil electrical conductivity (ECe)-weighted averages for every location of the world 

were derived, one for frequent irrigation systems (FI systems) and one for infrequent 

irrigation systems (II systems), as per Eq. 1. 

Eq. 1

The patterns 60-30-7-3 for FI systems and 40-30-20-10 for II systems in Eq. 1 come from 

Ayers and Westcot.25 These patterns are rough approximations, since in reality the 

quantitative water uptake is very specific to each soil profile, rooting depth and the rates of 

evaporation, transpiration, irrigation and drainage. We consider the simplification in Eq. 1 

acceptable for the purpose of large-scale modelling. The resulting ECe,FI and ECe,II are 

subsequently used in the calculation of two sets of CFs at both midpoint and damage level, 

one to be used with FI systems (typically drip and sprinkler) and the other with II systems 

(typically furrow and gravity). The SaltLCI tool helps the LCA practitioner decide which set 

to choose, if FI or II, in tier 1 and tier 2 approaches.  

ECe values per soil depth were extracted from the ISRIC-WISE soil profile database.26 This 

database contains information on 19 physical and chemical soil properties, including ECe, on 

a 5 by 5 arc-minutes global grid. A grid cell is divided in five depth intervals of 20 cm and up 

to 100 cm depth, i.e. soil depth is 1 m. ECe of the two deepest soil layers were averaged 

(arithmetic mean) to compute ECe,depth4 in Eq. 1. The complexity of each grid cell varies from 

cells with only one soil type to cells with complex associations of up to eight soil types (e.g. 
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a grid cell may contain 60% of soil type 1 and 40% of soil type 2). Grid cells with the same 

soil types are aggregated in map units. For our large-scale assessment purpose, we considered 

only the dominant soil type in every map unit (i.e. soil type 1 in the example). This resulted 

in a total of 4931 globally distributed map units which contain 31% of the total amount of 

soil types. The median relative area of the dominant soil type within a map unit is 60%, with 

lower and upper quartiles of 50% and 70% respectively.26 Missing ECe information for a 

specific soil depth was disregarded in the calculation of the depth-weighted ECe, which 

occurred only in 14 map unit records. 

⦁ Calculation of midpoint level characterisation factors: soil salinisation 

susceptibility 

The electrical conductivity of a soil is indicative of its salinisation susceptibility. We 

assumed ECe be dependent on three variables: 1) mass of salts in soil, 2) ionic composition of 

salts in soil, and 3) volume of water in soil, as per Eq. 2.

Eq. 2

Where the units of the CF are dS/m×m3 soil/g salt in soil, to be interpreted as electrical 

conductivity per g salt in 1 m3 soil, ECe, Irrig freq (dS/m) corresponds to the soil-electrical-

conductivity-weighted averages computed for frequent and infrequent irrigation systems with 

Eq. 1, and salts in soilbackground,Irrig Freq is the background mass of salts in soil for both irrigation 

frequencies. TDS is the salt concentration in soil moisture (g salt/m3 water), C is the soil-

water’s ionic composition (mol/m3 water) and AW is the volume of water in soil per soil 

volume (m3 water/m3 soil). The subscript Irrig freq means that the variables were calculated 

applying the weights per soil depth as in Eq. 1. 

To operationalise the theoretical expression in Eq. 2, we introduced simplifications due to the 

lack of regionalised data about the ionic composition of salts in soil. These were (Eq. 3): 1) 

11



we omitted the ionic composition; 2) TDS was computed using the generic, linear conversion 

factors mentioned in the introduction and the spatially explicit ECe-weighted averages of Eq. 

1.

Eq. 3

In reality, ECe-TDS conversion factors (here 640 or 800) depend on TDS and the dominant 

ions present in the soil, which vary between locations, seasons and water quality(ies) used to 

irrigate a soil11 and should therefore be regionalised/seasonalised as new data become 

available, as they modify TDS to different extents. 

Midpoint CFs reflect that soils react differently to a marginal addition of salt as a function of 

its salt and water content. The greater the mass of salts built-up in the soil profile and the 

lower the water volume to dissolve new salt additions, the higher its salinisation 

susceptibility.

Salt content per water volume (i.e. TDS) was transformed to salt content per soil volume 

using information on soil-water content (AW). Existing soil databases at the global scale with 

a reasonable resolution do not have information on AW, thus we had to estimate it. 

Trabucco27 provided a global high-resolution soil-water balance dataset although assuming 

uniform soils globally, while our interest was in highlighting spatially variable soil 

properties. Accordingly, a proxy measure of AW per soil unit and irrigation frequency was 

estimated by applying Eq. 4.  

Eq. 4

Where TAWCIrrig freq (m3 water/ m3 soil) stands for total available water capacity of a soil, 

weighted per soil depth as indicated in Eq. 1; P (mm) is annual precipitation and ET0 (mm) is 
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annual potential evapotranspiration. P and ET0 data were sourced from the spatially-resolved 

climate data from New et al28 and TAWC per soil depth was taken from ISRIC-WISE.26 AW 

was estimated at 5’ resolution, distinguishing between frequent and infrequent irrigation 

schemes, following the rationale explained in section 2.3. The calculation in Eq. 4 is based 

on the assumption that water actually available in soil depends on two parameters: 1) the 

capacity of the soil to store water (total available water capacity, TAWC), and 2) its water 

saturation (as percentage of filling of TAWC from 0% to 100%). For the saturation we 

assumed that the only water exchanges controlling it are the major flows between soil and 

atmosphere, that is, P and ET0. The ratio between P and ET0 (P/ET0) is called aridity index. 

The lower the precipitation and the higher the potential evapotranspiration, the more arid an 

area and the drier its soils, i.e. the lower the saturation of TAWC. Arid areas have aridity 

indices between 0 and 0.65 while humid areas have indices >0.65 sometimes reaching 

values >1, in which case it was truncated to 1. Aridity indices were used in Eq. 4 as 

percentages directly multiplied with TAWC to provide a rough estimation of AW. Soils in 

humid areas are closer to water saturation, and thus any marginal addition of salt will be 

diluted in all the available soil water. Salt concentration in soil, and its associated ECe, will 

only increase very slightly. On the other hand, soil moisture in dry soils is low, so that with 

any salt addition the ratio of change of TDS and hence ECe will be higher. 

The characterisation model includes the background mass of salts in soil, that is, the mass of 

salt in soil before a new addition of salts from irrigation (i.e. LCI). The background 

concentration aims at identifying how sensitive a soil is to a new salt addition, which depends 

on soil properties and climate conditions.  

⦁ Calculation of damage level characterisation factors: crop diversity loss

CFs at damage level have units of CDL per g salt in 1 m3 soil (% CDL× m3 soil/g salt in soil) 

and were calculated with the following equation: 
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Eq. 5

As shown in Eq. 5, the modelling up to the damage is calculated via the midpoint impact 

indicator and an effect factor (EF). As with midpoint CFs, CFs at damage level also assume 

marginality, thus a change in crop diversity depends only on background salt conditions. The 

EF takes into account that salt concentration in soil above a certain threshold affects biomass 

production, thus its capacity to deliver ecosystem services. Not all crops are equally affected 

by salinity. The relationship between salt concentration in soil and crop production is well 

studied and salt tolerance guidelines for most commonly marketable crops are available. 

General guidelines classify crops into four categories, from very sensitive crops to tolerant 

crops, according to the maximum salt concentration they can withstand for a specific percent 

yield potential, ranging from 100% (no crop losses) to 0% (maximum crop loss). For 

example, salt tolerant crops such as barley and cotton do not experience any reduction in crop 

yield (i.e. 100% yield) until ECe>7.5 dS/m, whereas sensitive crops (e.g. almond, orange) 

start having yield losses (i.e. <100% yield) at ECe<1.7 dS/m.25 In general, vegetable crops 

and fruit trees show a higher sensitivity to soil salinity than cereals and forages. Furthermore, 

soil texture is an important parameter in determining how sensitive a crop is to the salt 

accumulated in a soil profile. The lower the amount of clay particles, the greater the osmotic 

pressure the salts exert. Osmotic pressure refrains plants from taking up soil water, thereby 

eventually affecting plants’ growth.5

In practical terms, we constructed a non-linear crop sensitivity distribution model to derive 

the EFs (Equation 6). This model describes the statistical relationship between soil electrical 

conductivity and clay content in soil (independent variables) and the potentially negative 

effects on crops (dependent variable), using crop diversity loss as a metric. To build this 

model, we proceeded as follows: 1) we obtained information on ECe thresholds for each crop 

salt tolerance category (from sensitive to tolerant crops) associated with a 90% yield 

potential (10% yield reduction) as a function of soil texture; 2) we gathered information 
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about the salt tolerance category of 157 agricultural crops; 3) based on steps 1 and 2, we 

calculated the cumulative relative amount of affected crops at increasing salinity levels; 4) 

we built equations in Equation 6 based on step 3; 5) we calculated the derivative of the 

curves in Eq. 6; 6) Using ECe from the midpoint CFs and soil texture from the ISRIC-WISE 

soil profile database26 for  every soil map unit (weighted per soil depth as specified in Eq 1), 

we obtained marginal, regionalised EFs for frequent irrigation and infrequent irrigation 

systems. A detailed description on these methodological steps is provided in section S3 of the 

SI. 

Eq. 

6

⦁ Spatial aggregation of characterisation factors

CFs were resolved at 5 arc-minutes spatial resolution and are useful when information on the 

exact salt emission location is available, matching the spatial requirements of the tier 3 

modelling approach in SaltLCI. However, the user of large-scale models such as LCA usually 

only knows the country or at the best the sub-country region where the emission happens. To 

facilitate the impact assessment of agricultural processes where the exact location is 

unknown and that are modelled using tier 1 and tier 2 in the LCI we aggregated via a median 

CF at sub-country and country levels. We chose the median as measure of central tendency 

because the median is more robust against outliers than the arithmetic mean. We checked for 

the distribution of grid cell level CFs at global scale and none of >50 probability distributions 

showed a good fit to the data. Therefore, besides the median, we reported information on the 

minimum, the maximum, the arithmetic mean and the standard deviation as a pragmatic 

solution to estimate uncertainty due to spatial aggregation as recommended in current LCIA 

guidance.29 For the aggregation at sub-country level, the WMO subregions were used.30

WMO distinguishes 486 sub-regions worldwide delineated following a mixture of 
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geographical and hydrological criteria. For the aggregation at country level, we used the 

world countries layer from Esri,31 representing the political borders as they existed in January 

2017. Areas for which no CF is available (i.e. no data values) were excluded from the 

statistical analysis.  

⦁ Results

⦁ SaltLCI tool: average salt emission values per crop and country

Average salt emission values with irrigation water for 160 crops at country scale are 

available in the SaltLCI tool and are used as input data to calculate average values of salt 

added to soil based on default crop management practices per country in tier 1 and on 

tailored scenarios in tier 2. Figure 2 shows the statistics of the salt emissions per crop and 

country. Cowpea is associated with the median emission level among all crops (160 g salt/kg 

crop) and Peru is associated with the median emission level among all countries (157 g 

salt/kg crop). The latter statistic was calculated considering the arithmetic average of the 

emissions per kg crop of all crops produced in the country. Crops above the 95th percentile 

have all high irrigation requirements. Furthermore, vanilla and almond are cultivated in 

Mexico and Spain, two countries with high irrigation water salinity. The top country in terms 

of average emissions per kg yield is Turkey, because irrigation water has twice the 

concentration of salts than the immediately subsequent countries. Russia is associated with 

virtually 0 g salt emitted per kg yield due to the very low and questionable TDS in surface 

and ground water bodies reported in GEMstat.32 Thus, we raise a flag of caution when using 

salt emission values in this country. SaltLCI tool covers most harvested mass on global 

croplands and is useful for LCA and other large-scale assessment studies.
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Figure 2. Box plots of salt emissions with irrigation water (in g salt/kg crop). “A” shows the 

statistics per crop and “B” per country, the latter calculated using the arithmetic mean of all 

the crops grown in a country. The centre line of each box is the median, the cross is the 

arithmetic mean, the outer lines are the 25th and 75th percentiles, and the whiskers represent 

the 5th and 95th percentiles. The circles indicate outliers. 

⦁ Midpoint level characterisation factors

Spatially-variable CFs for frequent irrigation and infrequent irrigation agricultural practices 

to be used for an assessment at midpoint level are shown in Figure 3A and provided in the SI 

as georeferenced maps. The higher the midpoint CF, the more susceptible a soil is to a 

marginal addition of salts. Values have been limited to a range from 0 to 10 dS/m×m3/g salt 

in soil. The upper cut-off value of 10 was given to less than 0.6% of the land surface. This 

area is entirely located in Eastern Sahara, where crop growth is not possible due to hyper-arid 

conditions. The global midpoint CF (arithmetic) mean is 0.190 dS/m×m3/g salt in soil for FI 

systems and 0.191 dS/m×m3/g salt in soil for II systems. The global median for both 
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irrigation frequencies is very close to 0 (1.22E-02 dS/m×m3/g salt in soil for FI and 1.25E-02 

dS/m×m3/g salt in soil for II). This happens because positive CFs have in general very low 

values and because 43% of the global terrestrial surface has a midpoint CF = 0, irrespective 

of the irrigation system used. Any emission of salt with irrigation water in areas with CF=0 

will not lead to a potential, negative impact on soil quality. Null CF values are mostly located 

in humid areas spread over the five continents (e.g. Scandinavia, Central Africa, Brazil). In 

humid areas, salts that irrigation may have brought to the soil are washed away with rainfall. 

In areas with positive CFs, soils vary widely in susceptibility to salinisation. The largest 

potential impacts are observed in dry lands located in northern African regions and impacts 

are also expected to be moderately high in the south of Saudi Arabia. As a rule of thumb, CFs 

for FI are slightly lower than its II counterparts in a given location in Africa and Europe and 

slightly larger in America and central Asia, but the differences between both irrigation 

options are rarely greater than 5% (Figure 3A), which reveals that in most cases there is no 

clear preference for an irrigation system. Midpoint CFs aggregated to global, country and 

sub-country levels using the median are provided in the excel file of the SI. The minimum, 

maximum, range, arithmetic mean, standard deviation and sum are also provided for each 

aggregated unit to better showcase the different degree of spatial variability within each 

aggregation unit.

⦁ Damage level characterisation factors

Figure 3B shows regionalised damage level CFs for frequent irrigation and infrequent 

irrigation systems which are available in georeferenced format in the SI as well. The higher 

the value of the CF, the less crop options the soil can support per salt unit added to the soil, 

thus the higher the damage on the soil’s capacity to deliver ecosystem services. Damage CFs 

take values from 0 to 3.2 %CDL×m3/g salt in soil, being the global arithmetic mean 5.70E-02 

%CDL×m3/g salt in soil for FI systems and 5.73E-02 %CDL×m3/g salt in soil for II systems. 

The global median is nearly 0, namely 3.20E-03 %CDL×m3/g salt in soil for both FI and II 
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systems. A damage CF=1, for instance, represents a loss of 1% of crop diversity (i.e. how 

many) per gram of salt in the soil profile. As for midpoint CFs, the highest CFs at damage 

level are found in dry areas of northern Africa, followed by southern regions in Saudi Arabia. 

Although the CFs trend at both impact levels is the same, midpoint CFs have a larger spread 

than damage CFs (0 to 10 vs 0 to 3.2, respectively). This is because in the damage indicator 

EFs that are multiplied with the midpoint CFs have values below 1 (Figure 3C). Higher EFs 

were allocated to higher quality soils (i.e those with lower ECe and higher clay content), 

offsetting a fraction of the midpoint impact value, for instance, in Eastern Australia and 

Southern Africa. Around 2% of the EFs were negative and have been transformed to 0. These 

EFs are in soil units with an ECe>20 dS/m, which corresponds to soils so salinized that crops 

no longer produce any yield and the potential for further yield drop is thus null. Most of these 

soils are located in the very degraded, irrigated lands of the Aral Sea basin and the Caspian 

Sea basin in Kazakhstan. A total of 45% of the terrestrial surface has damage CFs equal to 0 

and are situated in the areas where midpoint CFs are zero plus the areas where EFs were set 

null. Globally, EFs for II systems are either equal or around 5% smaller than EFs for FI 

systems, because deeper soil layers, which have a higher relative importance under II 

practices (Eq. 1), usually have greater ECe and thus lower quality to safeguard from a pure 

resource perspective. This leads to areas with a FI-to-II ratio of 1 for the midpoint indicator 

having slightly smaller damage level CFs for II practices. The SI excel file contains the 

median and other estimates of uncertainty for damage level CFs aggregated at global, country 

and sub-country scales.

19



Figure 3. Worldwide CFs resolved at 5’ resolution at the midpoint level (“A”) and at the 

damage assessment level (“B”). Row “C” displays the EFs. In all three cases, the image on 

the left is for FI systems, in the middle for II systems and on the right is the FI-to-II ratio. 

Values of the FI-to-II ratio <1 mean that FI systems lead to lower potential impacts and are 

preferred over II systems, while values >1 mean that FI systems perform worse than II 

systems. White areas in the FI-to-II ratio are for regions where CF =0 for both FI and II 

systems. 

⦁ Illustrative example

To demonstrate how to apply the model described herein, we employed an illustrative 
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example on rice cultivation in the Ebro delta, Spain (section S3). The FU is 1 kg rice at farm. 

The example evaluates an innovative practice aimed at reducing freshwater consumption 

using drip irrigation instead of flooding. In the study area, salt concentration in irrigation 

water is high (TDS = 800 mg/l). The whole impact pathway as shown in Figure 1 is applied, 

assuming different levels of detail for LCI data availability, which also affects the spatial 

resolution of the CF that can be applied, being either country, sub-country or at grid cell 

level. Results reveal that, from a soil salinisation perspective, drip irrigation is not 

recommendable. Focusing on the drip irrigation scenario, use of tier 3 reveals higher salt 

addition in soil than for tier 2 and tier 1. This is because tier 3 considers the high salinity of 

the irrigation water and the reduced flushing effect that drip irrigation has on the salts added 

to the soil, while lower tiers do not. At the LCIA, CFs for the specific grid cell are lower than 

for the whole country (Spain) and sub-country region (east coast of Spain). Higher LCI 

results for tier 3 are partially neutralised by lower sensitivity of the soil in the CF due to 

lower salt background concentration in the specific cell area. 

⦁ Discussion

⦁ Model characteristics

The developed model serves to perform quantitative, comparative assessments of the 

potential impacts on soil resources due to the accumulation of salts in agricultural soils from 

salt emissions via irrigation water. The model can discriminate between crops, irrigation 

technologies and use of leaching and drainage systems, in any location of the world, being 

therefore useful to rank farming practices in terms of soil salinisation impacts. 

The SaltLCI inventory tool models the salts from irrigation added to soil at equilibrium, 

which is a modelling step typically included in the LCIA phase of an LCA study. LCA 

guidelines recommend to clearly delineate the boundaries between the LCI and the LCIA by 

including the modelling of the dynamic fate processes of the product system under analysis in 

the LCI and the modelling of the steady-state fate processes that happen beyond any human 
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control, thus independently of the agricultural practice, in the LCIA.33,34 However, in our 

model, the calculation of the addition of salts in soil at steady state resulting from irrigation is 

done at the inventory as a connecting step between LCI and LCIA because our approach 

lumps all fate processes together as a function of the leaching and drainage management. The 

dynamic nature of soil salinity in large-scale modelling was tackled by Payen,35 who 

developed a daily time step model called E.T. and used it in LCA to calculate water and salt 

balances on a mandarin orchard irrigated with a drip system. E.T. was developed to allow 

LCA-based eco-design of cropping systems, but is unfortunately not published yet. Although 

meant to be used in LCA, it requires a non-negligible amount of data regarding soil 

properties and agricultural practice to describe the system under study. Data intensiveness is 

a limitation for most LCA applications: practitioners usually do not know where the product 

under assessment comes from, let alone the irrigation technology and the soil characteristics 

of the production site. In this respect, the tiered approach of the SaltLCI tool suits different 

levels of data availability and potential uses.

CFs are very different across the globe because soil and climate are local factors that play an 

important role in soil salinisation impacts. This highlights the importance of performing a 

regionalised assessment of salt emissions, thus only using the global median CFs when 

information at a finer resolution is not available. In most humid regions CFs are 0, making it 

unnecessary to include impacts of soil salinisation with irrigation water in quantitative 

sustainability assessments of agricultural products grown in humid areas. In areas with 

positive CFs, variation is mainly attributable to geographic location, while the difference 

between CFs due to the irrigation system used at a given spot is very small. This happens 

because soil properties considered in the definition of the CFs vary more over space than 

with depth. 

For damage level CFs, higher EFs (∆CDL/∆ECe) were allocated to higher quality soils. The 

rationale behind this choice is that good quality soils are scarcer and serve to a greater 

diversity of purposes, which is the asset we want to protect for future uses. The concept of 
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crop diversity loss to quantify damage on soil quality and ecosystem services is original. One 

of the advantages of using damage indicators is that they allow for comparing and adding 

impact results of different contributing impact categories. In the context of this article, this 

means that impacts of other soil degradation processes, such as erosion, compaction and 

change of the carbon stock must also be measurable in terms of crop diversity loss, which is 

indeed the case (see section S4) and thus shows the added value of the concept for use in 

LCA. 

The midpoint impact score, obtained from multiplying the LCI flow associated to the FU and 

the corresponding midpoint CF, has units of dS/m × m3 soil per FU and informs about the 

potential impact of the FU on the increase of the electrical conductivity of the soil used to 

fulfil the function assessed. The increase of the soil’s ECe reduces its usability potential. The 

damage impact score (LCI per FU × damage CF) has units of CDL× m3 soil per FU and 

informs about the potential impact of the FU on the diversity of crops that will grow in the 

affected soil. The midpoint indicator is more versatile as it can be used for any type of land 

use, whereas the damage indicator is informative only for agricultural LCAs. This leaves the 

door open for the development of indicators for other land uses/land use changes (e.g. 

potentially disappeared fraction of natural vegetation species due to soil salinisation in 

natural areas).

⦁ Model limitations

The most important limitation of the model for use in sustainability assessments is that it 

focuses on impacts due to salt accumulation in one single environmental compartment, that 

is, in agricultural soil. However, salts leached from the soil profile may accumulate in 

aquifers and water bodies downstream, leading to potential environmental impacts off-site. A 

regionalised, global multimedia model predicting the transport of salts from soils to aquifers 

and surface water bodies could solve this problem and help prioritise decisions following an 

integrated life cycle assessment perspective. To this end, operationalising the multimedia 
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hydrological fate modelling presented by Núñez et al36 can be of much help. A major 

drawback of the model is the focus on soil salinisation with irrigation water, whereas land 

use change, brine disposal and overuse of coastal ground water bodies are anthropogenic 

drivers that may concomitantly lead to salt accumulation in agricultural soils.19 Another 

limitation is that we assumed that the movement of water in the soil profile is not affected by 

the presence of a sodic horizon. Sodic layers prevent water transmission due to structural 

problems, restricting leaching and drainage and eventually leading to salt accumulation in the 

soil.7

The model is an empirical model based on the establishment of correlations between salts in 

soil and presumed effects on soil electrical conductivity and crop diversity.  

Sources of uncertainties different from aggregating CFs (section S5) and a comparison of the 

modelling approach we applied compared to other land use impact assessment models in the 

LCA framework (section S6) are described in the SI. 

Associated content 

Supporting information. Excel file: SaltLCI tool, input data to the SaltLCI, and 

characterisation factors at sub-country, country and global scales. Word file: description of 

the SaltLCI tool, LCIA model choices, and sources of uncertainty affecting the overall 

model. Raster files: characterisation factors at 5 arc-minutes resolution. 
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