
 
 
 
 

 
 
 
 
 
 
 

 

This document is a postprint version of an article published in Journal of Food 

Engineering© Elsevier after peer review. To access the final edited and published 

work see https://doi.org/10.1016/j.jfoodeng.2020.110148  

 

Document downloaded from: 

 

 
 
 
 
 
 
 

https://doi.org/10.1016/j.jfoodeng.2020.110148
http://repositori.irta.cat/
http://repositori.irta.cat/


Specularity Removal from Hyperspectral Images of Food Materials 

1 

Effectiveness of Specularity Removal from Hyperspectral Images 1 

on the Quality of Spectral Signatures of Food Products 2 

Gamal ElMasry 1,2         Pere Gou 1         Salim Al-Rejaie3  3 

1 Institute of Agriculture and Food Research and Technology (IRTA), Finca Camps i Armet s/n, 17121, Monells, Spain   4 
(Tel. +34 666293308, Fax: +34 972630980, Email: gamal.masry@irta.cat) 5 

2 Suez Canal University, Faculty of Agriculture, Agricultural Engineering Department, Ismailia, Egypt 6 

3 Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia 7 

 8 

Abstract 9 

Specularity or highlight problem exists widely in hyperspectral images, provokes reflectance 10 

deviation from its true value, and can hide major defects in food objects or detecting spurious false 11 

defects causing failure of inspection and detection processes. In this study, a new non-iterative 12 

method based on the dichromatic reflection model and principle component analysis (PCA) was 13 

proposed to detect and remove specular highlight components from hyperspectral images acquired by 14 

various imaging modes and under different configurations for numerous agro-food products. To 15 

demonstrate the effectiveness of this approach, the details of the proposed method were described and 16 

the experimental results on various spectral images were presented. The results revealed that the 17 

method worked well on all hyperspectral and multispectral images examined in this study, effectively 18 

reduced the specularity and significantly improves the quality of the extracted spectral data. Besides 19 

the spectral images from available databases, the robustness of this approach was further validated 20 

with real captured hyperspectral images of different food materials. By using qualitative and 21 

quantitative evaluation based on running time and peak signal to noise ratio (PSNR), the experimental 22 

results showed that the proposed method outperforms other specularity removal methods over the 23 

datasets of hyperspectral and multispectral images.  24 

Keyword: hyperspectral imaging, multispectral imaging, specularity, highlights, spectral analysis 25 

 26 

1. Introduction 27 

Acquisition of good hyperspectral images is very crucial for accurate detection, classification and 28 

quality prediction of essential food quality traits during food processing practices (ElMasry and 29 

Nakauchi 2016) because poor image quality negatively affects many subsequent data processing and 30 

treatments. One of the challenging tasks in processing multi-dimensional hyperspectral images with 31 
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high spectral and spatial resolutions is to extract useful information from the vast amount of data 32 

volume of numerous spectral bands (ElMasry et al., 2007). The process of extracting information 33 

from hyperspectral images, and its transformation into a useful representation, enables the description 34 

of intrinsic characteristics of objects in the scene (Khan, Thomas et al. 2017). However, the raw 35 

hyperspectral images acquired even by a fully calibrated hyperspectral imaging system may have 36 

different sorts of problems, and therefore it is not likely to produce ideal representation of the objects 37 

being imaged. That is why careful consideration of image pre-processing routines is substantially 38 

important (Achata et al., 2019). In general, all of pre-processing routines have already been described 39 

and employed by many authors for different applications (ElMasry and Nakauchi 2016; Nguyen-Do-40 

Trong et al., 2019), but very few studies (e.g. Fu, Tan et al. 2006; Koirala, Pant et al. 2011; Zheng, 41 

Sato et al. 2015) were devoted towards dealing with specular problems encountered in hyperspectral 42 

images, especially those ones that will be used for real-time applications in food processing plants. In 43 

fact, the implementation of hyperspectral imaging systems at the industrial level is not 44 

straightforward, as several issues must be addressed such as noise reduction and removal of 45 

specularity highlight problems (Sivertsen, 2011). Solving specularity highlight problem of 46 

hyperspectral images in on-line food applications is very crucial and many efforts have been carried 47 

out to reach fully automated quality evaluation systems (Martin, 2007). However, a few examples 48 

have been reported in the literature for real-time applications such as those implemented for the 49 

analysis of fat content in meat trimmings, screening of fatty acid composition in intramuscular fat, and 50 

contamination and disease detection in poultry (Wold et al., 2011; Chao et al., 2008; Park et al., 51 

2002). By overcoming some of the limitations of this technology, it is expected that hyperspectral 52 

imaging techniques will be moving from laboratories to practical real-time applications in modern 53 

food industrial control and inspection systems. 54 

When a bundle of light rays hits a food sample, two types of reflections namely specular and diffuse 55 

reflections are generated (Shen, Zhang et al. 2008; Tan and Ikeuchi 2008; Yang, Tang et al. 2016; 56 

Guo, Zhou et al. 2018). Specular reflection is a mirror-like reflection of light from a sample causing 57 

the problem of specularity or highlights (Tan and Ikeuchi 2008; Yang, Tang et al. 2015). While the 58 

diffuse reflection depends only on the illumination direction in term of its intensity magnitude, the 59 

location of specular reflection depends on viewing and illumination directions, causing its appearance 60 

to be inconsistent (Tan, Nishino et al. 2004). Thus, to properly acquire the diffuse only reflection, a 61 

method to separate the two components robustly and accurately is required (Akashi and Okatani 2016; 62 

Guo, Zhou et al. 2018). In computer vision and hyperspectral imaging applications, the specularity 63 

problem may be ignored completely, treated as outliers, reduced or removed, or alternatively used it 64 

as a source of information (Tan and Ikeuchi 2008; Hamid 2013). The simplest way to avoid 65 

specularity problem and its influences is by using cross setting of a polarizing filter in front of the 66 

camera sensor and light source during image acquisition (Nayar, Fang et al. 1997; Yoon, Choi et al. 67 
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2006; Koirala, Pant et al. 2011; Yang, Tang et al. 2016; Nguyen-Do-Trong et al., 2019). Alternatively, 68 

it could be solved by using a low-pass filter to the maximum fraction of the chromaticity to smooth 69 

out the variance due to specular pixels in the image.  70 

1.1. Specularity problem in RGB colour images 71 

In all imaging modalities, it is very important to differentiate between pixels having specular 72 

highlights and saturated pixels. Pixels whose intensity values are greater than the dynamic range 73 

assigned for each pixel to record the maximum irradiance in the scene are known as saturated pixels 74 

that contain less information about the scene. Contrary to the specular pixels that are related to 75 

physics of illuminant, the scene geometry and the properties of material not due to the image sensors, 76 

saturated pixels is caused by underlying physical characteristics of the sensor which limit the highest 77 

irradiance that can be measured for the given settings of the camera. Because saturated pixels do not 78 

have unique corresponding irradiance values, they are often treated as missing values or interpolating 79 

them from surrounding pixels. Alternatively, the saturated pixels could be by certain offset correction 80 

or by applying high dynamic range imaging (Kavusi & ElGamal, 2004). Numerous experimental 81 

studies have been performed to obtain insights into specularity phenomenon and to develop models 82 

that explain the mechanisms of separating diffuse and specular components (Lehmann and Palm 83 

2001; Tan and Ikeuchi 2008; Artusi, Banterle et al. 2011; Yamamoto, Kitajima et al. 2017). In colour 84 

images, detection of specular and diffuse pixels has been investigated intensively (Shen, Zhang et al. 85 

2008; Shen and Zheng 2013; Nguyen, Vo et al. 2014; Suo, An et al. 2016; Yang, Tang et al. 2016) by 86 

using either single image techniques or multiple images-based techniques. In the single-image 87 

techniques, the specularity problem is detected or removed based either on colour space 88 

transformation or on spatial information analysis (Shen and Zheng 2013; Akashi and Okatani 2016; 89 

Yamamoto, Kitajima et al. 2017; Guo, Zhou et al. 2018). The second line of work for removing 90 

specularity was focused on using multiple images-based techniques that depend on acquiring a 91 

number of images at different imaging conditions. The methods of this category are less practical 92 

because multiple images with certain conditions are not always available in practice.  93 

1.2. Specularity problem in hyperspectral images 94 

The quality of the acquired hyperspectral images, the way of extracting spectral fingerprints and 95 

methods of data modelling have substantial effects on the outcomes of the subsequent analyses and 96 

processing. Because this kind of images is acquired at numerous contiguous wavelengths within 97 

different regions of the electromagnetic spectrum, the spectral images come also with the problem of 98 

specular highlights (Koirala, Pant et al. 2011; Khan, Thomas et al. 2017; Washburn et al., 2017). This 99 

is as true for hyperspectral images as for the conventional colour images, because specularity is most 100 

related to the physics of illuminant, the scene geometry and the properties of material not due to the 101 

image sensors used (Fu, Tan et al. 2006). 102 
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When a hyperspectral image was acquired for a highly ‘homogeneous’ object with consistent 103 

physicochemical characteristics, the spectral signatures of every single pixel in the image should be 104 

identical throughout the electromagnetic spectrum. However, due to relative arrangement between the 105 

camera and the sample, object geometry, illumination type and structure and the viewing angel, the 106 

specular problem may appear with different severity in the image. For instance, Figure 1a shows a 107 

pseudo-colour image rendered from a hyperspectral image acquired in the spectral range of 400-1000 108 

nm for a homogeneous fat layer of consistent fat content along the sample. It is quite obvious to notice 109 

that this image suffers from specularity problem in the left hand side of the sample. The intensities of 110 

reflected light appeared in this spot are strong highlight and are much higher than the target intensities 111 

under or on the reflection surface, making distinguish of the effective information from the reflected 112 

highlight very difficult. Due to homogeneous fat content in the whole sample, the spectral signatures 113 

of three different points (D1, D2 and D3) exactly adjacent to the specular region were quite identical 114 

despite their relative spatial locations in the image as noticeably shown in Figure 1b. Such points 115 

exhibited their intrinsic properties due to their diffuse reflectance resulting from the interaction of 116 

light rays with the sample. However, the spectral signatures of pixels inside the specular zone exactly 117 

adjacent to these three points are substantially different due to the presence of specular reflectance 118 

besides the diffuse reflectance within this zone. The spectra of two different points (S1 and S2) inside 119 

this zone are shown in Figure 1b demonstrating that the specular problem leads to higher reflectance 120 

values despite the homogeneity of the food sample. Although all absorption bands throughout the 121 

spectrum were all well preserved in the specular spectra, the presence of specularity amplified the 122 

reflectance magnitudes at all wavebands. Therefore, for obtaining better reliable data from 123 

hyperspectral images, it is necessary to have the image without specularity highlights (Shen and 124 

Zheng 2013; Zheng, Sato et al. 2015); otherwise, the desired objects may be obscured by highlights or 125 

detected as different objects (Koirala, Pant et al. 2011; An, Suo et al. 2015; Akashi and Okatani 126 

2016).  127 

Despite the negative effects of specularity problem on the magnitude of spectral data extracted from 128 

hyperspectral images, most of research in hyperspectral imaging applications for food materials was 129 

conducted under the assumption of perfect diffuse reflection without considering the specular problem 130 

or by excluding specular pixels from calculations as noise or outliers (ElMasry, Sun et al. 2013; 131 

Suktanarak, S., & Teerachaichayut, 2017). However, this may lead to unbalanced results if the size of 132 

the highlight region is very large, because the large number of pixels involved cannot be considered as 133 

outliers (Yang, Tang et al. 2015). The assumption of ignoring specularity (where it clearly exists) 134 

introduces constraints and reduces the robustness of the developed models (Khan, Thomas et al. 135 

2017). Thus, any algorithms used directly on hyperspectral images that show high specularity can lead 136 

to misleading outcomes such as false segmentations, deceptive object measurements and recognition 137 

errors. Although, specularity is a phenomenon in spectral images acquired under reflectance mode, 138 
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very few research endeavours have been directed towards this problem in multispectral and 139 

hyperspectral images. For instance, (Fu, Tan et al. 2006) introduced a specular invariant 140 

representation for hyperspectral images based on the dichromatic model and orthogonal subspace 141 

projection (OSP) using a very simple algorithm that only involves pixel level operations without any 142 

further post-processing operations. The only assumption they made is that illumination spectra are 143 

known as a priori. (Bochko and Parkkinen 2005) exploited a mixture model of probabilistic principle 144 

component analysis (PPCA) approach to detect the highlight-affected parts and the diffuse parts from 145 

spectral images without the need of information of the light source. By developing a novel low-rank 146 

matrix factorization perspective, (Zheng, Sato et al. 2015) suggested a method based on singular value 147 

decomposition (SVD) to separate the illumination (specular) and diffuse reflectance under general 148 

spectral illumination with reasonable results in synthetic and real hyperspectral data. Also, (Koirala, 149 

Pant et al. 2011) proposed a linear positive constrained spectral un-mixing method to separate the 150 

spectral image into its highlight and diffuse components at each pixel position by assuming that the 151 

highlight-affected part is the spectral power distribution (SPD) of the light source and the other 152 

endmembers are assumed to be the spectra of pure diffuse pixels.  153 

For practical applications of spectral imaging fields in food quality inspection operations, the ill-posed 154 

problem of specularity highlights should be mitigated and removed from all bands of the images 155 

because it conceals the real spectral properties of the examined food items, provides fake spatial and 156 

spectral information and obscures and fades the extracted data leading to misbehaving models. As the 157 

reflectance in specular highlight regions is the sum of diffuse and specular reflection components, the 158 

challenge is to separate both components from each other and keep only the diffuse reflectance that 159 

carries useful information about the sample. In practice, the other ready-to-use spectral pre-treatment 160 

routines such as standard normal variate (SNV), multiplicative scatter correction (MSC), mean 161 

centring and derivatives are unable to provide images free from specularity problem. Therefore, 162 

employing an innovative method to exclude such artefacts from the hyperspectral and multispectral 163 

images is substantially important. Therefore, the main aim of this study was to develop a new non-164 

iterative algorithm based on the fundamentals of dichromatic reflection model and principle 165 

component analysis (PCA) to detect and remove specular highlight components from hyperspectral 166 

and multispectral images acquired by various imaging modalities and under different configurations 167 

for numerous agro-food products. 168 

2. Methodology 169 

2.1. Image data 170 

To verify the robustness of the developed method of specular treatment, an extensive evaluation using 171 

various real hyperspectral images from different sources was conducted. The procedure of specular 172 

treatment used in this study was tested on different spectral images either from our previous studies 173 
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(ElMasry et al., 2012) or collected from hyperspectral and multispectral image database publicly 174 

available in the internet (e.g. http://www.cs.columbia.edu/CAVE/databases/multispectral). The 175 

tested spectral images were acquired in different regions of the electromagnetic spectrum from the 176 

visible (VIS), shortwave near infrared (SW-NIR) to the near infrared (NIR) regions with different 177 

spatial dimensions. Also, the images have different dynamic ranges from 12 to 14 bit and stored either 178 

in band-interleaved by pixel (bip), band-interleaved by line (bil) or band sequential (bsq) format. 179 

Spectral images of different inhomogeneous food samples were used in the experiment to evaluate the 180 

proposed method.  181 

2.2. Dichromatic Reflection Model 182 

A hyperspectral signal records the spectral radiance of a reflective surface, which is composed of the 183 

illumination spectral power distribution and the surface reflectance spectra (Zheng, Sato et al. 2015). 184 

Thus, in hyperspectral images of inhomogeneous objects such as food samples, the reflectance 185 

spectrum at any pixel in the image is a linear sum of diffuse and specular reflections (Koirala, Pant et 186 

al. 2011; Shen and Zheng 2013; Guo, Zhou et al. 2018). The highlight or specular component is 187 

usually due to the contribution of the spectral power distribution (SPD) of the light source. According 188 

to the dichromatic model, the reflection (I) of an inhomogeneous object (e.g. a piece of food sample) 189 

in the scene is a linear combination of the diffuse (𝐼𝐼𝐷𝐷) and specular (𝐼𝐼𝑆𝑆) components as explained in the 190 

following equation:  191 

𝐼𝐼 = 𝛼𝛼𝐼𝐼𝐷𝐷 + 𝛽𝛽𝐼𝐼𝑆𝑆 + 𝑒𝑒                     (1) 

To solve the equation for each pixel, it is assumed that the illumination is stable, the specular pixels 192 

are not saturated, and the spectral camera behaves in a linear manner, which means that the sensor 193 

response values are proportional to the intensity of the light entering the sensor. As a result, the 194 

dichromatic model applied for a hyperspectral image with Ω contiguous narrow bands centred at λ1, 195 

λ2......, 𝜆𝜆Ω, could be used to calculate the reflectance spectrum 𝐼𝐼(𝑥𝑥) or the response of the camera 196 

receptor at a geometric pixel location (x) as described in equation 2: 197 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐼𝜆𝜆1(𝑥𝑥)
𝐼𝐼𝜆𝜆2(𝑥𝑥)

.

.

.

.
𝐼𝐼𝜆𝜆Ω(𝑥𝑥)⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝛼𝛼(𝑥𝑥)𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆1)𝐸𝐸(𝜆𝜆1)𝑆𝑆(𝜆𝜆1) 𝑑𝑑𝑑𝑑 + �𝛽𝛽(𝑥𝑥)𝑅𝑅𝑠𝑠(𝑥𝑥, 𝜆𝜆1)𝐸𝐸(𝜆𝜆1)𝑆𝑆(𝜆𝜆1) 𝑑𝑑𝑑𝑑

�𝛼𝛼(𝑥𝑥)𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆2)𝐸𝐸(𝜆𝜆2)𝑆𝑆(𝜆𝜆2) 𝑑𝑑𝑑𝑑 + �𝛽𝛽(𝑥𝑥)𝑅𝑅𝑠𝑠(𝑥𝑥, 𝜆𝜆2)𝐸𝐸(𝜆𝜆2)𝑆𝑆(𝜆𝜆2) 𝑑𝑑𝑑𝑑
.
.
.
.

�𝛼𝛼(𝑥𝑥)𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆Ω)𝐸𝐸(𝜆𝜆Ω)𝑆𝑆(𝜆𝜆Ω) 𝑑𝑑𝑑𝑑 + �𝛽𝛽(𝑥𝑥)𝑅𝑅𝑠𝑠(𝑥𝑥, 𝜆𝜆Ω)𝐸𝐸(𝜆𝜆Ω)𝑆𝑆(𝜆𝜆Ω) 𝑑𝑑𝑑𝑑⎦
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

𝑒𝑒1(𝑥𝑥)
𝑒𝑒2(𝑥𝑥)

.

.

.

.
𝑒𝑒Ω(𝑥𝑥)

               (2) 

which can be rewritten as: 198 
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𝐼𝐼(𝑥𝑥) = � 𝛼𝛼(𝑥𝑥)𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆)𝐸𝐸(𝜆𝜆)𝑆𝑆(𝜆𝜆) 𝑑𝑑𝑑𝑑
Ω

+� 𝛽𝛽(𝑥𝑥)𝑅𝑅𝑠𝑠(𝑥𝑥, 𝜆𝜆)𝐸𝐸(𝜆𝜆)𝑆𝑆(𝜆𝜆) 𝑑𝑑𝑑𝑑
Ω

+ 𝑒𝑒(𝑥𝑥)                  (3) 

where 𝐼𝐼 = �𝐼𝐼𝜆𝜆1(𝑥𝑥), 𝐼𝐼𝜆𝜆2(𝑥𝑥) … … . 𝐼𝐼𝜆𝜆Ω(𝑥𝑥)� is the reflectance vector of image intensity at a pixel (x) 199 

having a spatial coordinates of 𝑥𝑥 = {𝑥𝑥,𝑦𝑦} representing its 2D location. The factor 𝛼𝛼 is the shading 200 

factor for diffuse reflection, 𝛽𝛽 is the weighting specular factor which accounts for interface reflection 201 

and specular geometry and e is the residual noise term. The terms 𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆) and 𝑅𝑅𝑆𝑆(𝑥𝑥, 𝜆𝜆 ) represent the 202 

diffuse and specular reflectance values at pixel position (x) and wavelength λ, E(λ) is the spectral 203 

power distribution (SPD) of the illuminant at a wavelength λ, which is independent of the geometry of 204 

the object and S(λ) is the camera sensor sensitivity at a wavelength λ. In the specular term, the 205 

specular reflectance Rs(x, λ) is similar to the spectral power distribution of the illuminant and is 206 

independent of wavelength λ and can be denoted as Rs(x) for the same image sensor. Under neutral 207 

interface reflection conditions, the noise term and camera gain could be ignored and Equation (3) is 208 

simplified to the following form: 209 

𝐼𝐼(𝑥𝑥) = 𝛼𝛼(𝑥𝑥)� 𝑅𝑅𝑑𝑑(𝑥𝑥, 𝜆𝜆)𝐸𝐸(𝜆𝜆)𝑆𝑆(𝜆𝜆) 𝑑𝑑𝑑𝑑
Ω

+ 𝛽𝛽(𝑥𝑥)𝑅𝑅𝑠𝑠(𝑥𝑥)� 𝐸𝐸(𝜆𝜆)𝑆𝑆(𝜆𝜆) 𝑑𝑑𝑑𝑑
Ω

                         (4) 

 210 
From equation 1 and 4, the diffuse and specular terms at a pixel location x are denoted by                          211 

𝐼𝐼𝐷𝐷 = ∫ 𝑅𝑅𝑑𝑑�𝑥𝑥,𝜆𝜆�𝐸𝐸�𝜆𝜆�𝑆𝑆�𝜆𝜆� 𝑑𝑑𝑑𝑑Ω  and 𝐼𝐼𝑆𝑆 = 𝑅𝑅𝑠𝑠(𝑥𝑥)∫ 𝐸𝐸�𝜆𝜆�𝑆𝑆�𝜆𝜆� 𝑑𝑑𝑑𝑑Ω , respectively. The main goal is to separate 212 

these two components from a single radiance or reflectance at each pixel position 𝐼𝐼(𝑥𝑥, 𝜆𝜆). 213 

2.3. Detection of specular highlight areas 214 

Specular candidate pixels in the input hyperspectral image could be discovered based on the 215 

local maxima (peaks) in the maximum image ‘𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝜆𝜆1, 𝐼𝐼𝜆𝜆2, 𝐼𝐼𝜆𝜆3, … … . . 𝐼𝐼Ω)’ in 216 

which the pixels with very high reflectance along all wavelengths were recorded. These local 217 

maxima are the centroids of the specular regions in the maximum image. Although all 218 

specular pixels obviously appear in the maximum image with the highest intensity values 219 

compared to the intensities of the other pixels, some pixels appeared in the maximum image 220 

are not necessarily to be specular highlight pixels because the reflectance of these pixels was 221 

compared with their corresponding pixels in the rest of all bands. Thus, to identify specular 222 

highlight pixels, the maximum image was first extracted from the original hyperspectral 223 

image and a thresholding process was applied to decompose the maximum image into two 224 

regions: R1 with strong specularity that set to one and R2 with weak or no specularity that set 225 

to zero. In this study, the maximum intensity in the 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) image minus three times its 226 

standard deviation was used as a threshold 𝑇𝑇1 for separating the strongest specular pixels in 227 
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this segmentation process. Thus, all pixels whose intensity in the 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) image exceeds 228 

this threshold were marked as the strongest specular pixels. 229 

2.4. Specular separation process 230 

In general, the specular regions appeared in the hyperspectral image are characterized by their 231 

maximum intensity along the wavebands in the spectrum compared to the other normal (diffuse) 232 

regions. To simplify the problem, the spectral power distribution (SPD) of the illuminant was 233 

assumed to equal the specular reflectance ‘𝐼𝐼𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�’. If the image was normalized 234 

to this maximum values and then scaled from 0 to 1, the value of the specular term 𝐼𝐼𝑆𝑆 should 235 

equal 1 for each waveband (Nguyen, Vo et al. 2014). Thus, when this specular term 𝐼𝐼𝑆𝑆 in 236 

equation (1) is replaced by the maximum values at all wavebands ‘𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�’, specular image 237 

as 𝐼𝐼𝑆𝑆(𝑥𝑥, 𝜆𝜆) = 𝛽𝛽(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)� is formed. Moreover, when the diffuse term 𝐼𝐼𝐷𝐷 is multiplied by the 238 

diffuse factor 𝛼𝛼 to produce a separated diffuse image 𝐼𝐼𝐷𝐷�𝑥𝑥,𝜆𝜆�, Eq. (1) becomes: 239 

𝐼𝐼(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) + 𝐼𝐼𝑆𝑆(𝑥𝑥, 𝜆𝜆)                                          (5) 

Equation 5 implies that the original reflectance spectral image 𝐼𝐼(𝑥𝑥, 𝜆𝜆) is composed of a diffuse 240 

component image 𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) and a specular component image 𝐼𝐼𝑆𝑆(𝑥𝑥, 𝜆𝜆). Supposing there are two adjacent 241 

pixels having diffuse reflection components of [𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆), 𝑘𝑘𝑘𝑘𝐷𝐷(𝑥𝑥, 𝜆𝜆)], where k is a constant, these two 242 

neighbouring pixels will have reflectance value of [𝐼𝐼(𝑥𝑥, 𝜆𝜆), 𝑘𝑘𝑘𝑘(𝑥𝑥, 𝜆𝜆)]. This means that, the ratio of the 243 

diffuse reflection components does not change. Thus, the specular component for a certain pixel (𝑥𝑥) in 244 

the image should equal 𝐼𝐼𝑆𝑆�𝑥𝑥,𝜆𝜆� = 𝑘𝑘(𝑥𝑥)𝛽𝛽(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥,𝜆𝜆��, with 𝑘𝑘(𝑥𝑥) being an adjustment scale at a 245 

pixel position (x) (Koirala, Pant et al. 2011). Then, the separated diffuse reflection component image 246 

𝐼𝐼𝐷𝐷�𝑥𝑥,𝜆𝜆� of a pixel (x) at a wavelength 𝜆𝜆 is calculated as: 247 

𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼(𝑥𝑥, 𝜆𝜆) − 𝑘𝑘(𝑥𝑥)𝛽𝛽(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�                    (6) 

The scaling factor k was introduced to adjust the specularity level to obtain a smooth and natural 248 

diffuse component over the whole image at any wavelength as shown in Figure 1b. Accordingly, the 249 

brightest region in the hyperspectral image (area with maximum specularity) was located, segmented 250 

and labelled as the dominant region (A). By a simple dilation of this dominant region (i.e. the specular 251 

region), the neighbouring area (i.e. the diffuse region) surrounding the dominant region was marked, 252 

segmented and labelled as the surrounding region (B). As the diffuse reflectance should presumably 253 

be smooth, the mean diffuse reflectance ID̅ of both the dominant [ID̅(x, λ)]A and surrounding 254 

[ID̅(x, λ)]B regions were considered equal and the value of the scaling factor k was then calculated 255 

from the following equations:  256 

[𝐼𝐼𝐷̅𝐷(𝑥𝑥, 𝜆𝜆)]𝐴𝐴 = [𝐼𝐼𝐷̅𝐷(𝑥𝑥, 𝜆𝜆)]𝐵𝐵                                     (7) 
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[𝐼𝐼(̅𝑥𝑥, 𝜆𝜆)]𝐴𝐴 − 𝑘𝑘(𝑥𝑥)�𝛽̅𝛽(𝑥𝑥)�𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�  = [𝐼𝐼(̅𝑥𝑥, 𝜆𝜆)]𝐵𝐵 − 𝑘𝑘(𝑥𝑥)�𝛽̅𝛽(𝑥𝑥)�𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�        (8) 

𝑘𝑘(𝑥𝑥) =
[𝐼𝐼(̅𝑥𝑥, 𝜆𝜆)]𝐵𝐵 − [𝐼𝐼(̅𝑥𝑥, 𝜆𝜆)]𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�. ��𝛽̅𝛽(𝑥𝑥)�𝐵𝐵 − �𝛽̅𝛽(𝑥𝑥)�𝐴𝐴�
                                 (9) 

 257 

To avoid post-processing of the image to obtain dominant and neighbouring regions, calculating the 258 

coefficient 𝑘𝑘(𝑥𝑥) in this study was determined by performing principle component analysis (PCA) of 259 

the input hyperspectral image yielding loadings of spectral wavelengths and scores for each single 260 

pixel in the hyperspectral image. Because the specular pixels usually cause the highest variability in 261 

the hyperspectral image, they are naturally captured in the first principle components. Thus, by 262 

finding the regions of the highest scores in the first PC score image, the mean and standard deviation 263 

of the specular pixels were calculated. The mean and standard deviation of all pixels having the 264 

highest scores in PC1 can be used as an estimate of coefficient 𝑘𝑘(𝑥𝑥) because they represents eigen-265 

decomposition of the real contribution of the specular term in equation 6. The scores of the pure 266 

specular pixels isolated in the nonnegative PC1 score image were averaged and summed with three 267 

times their standard deviation as a reasonable estimate of 𝑘𝑘(𝑥𝑥). In other words, increasing the number 268 

of specular pixels in the score image will increase the value of the coefficient 𝑘𝑘(𝑥𝑥) and absence of 269 

specular pixels in the PC score image will lead this coefficient to equal zero meaning that the specular 270 

term is zero and the whole pixels are ideally diffuse pixels according to equation 6. 271 

After calculating the coefficient 𝑘𝑘(𝑥𝑥), the second difficulty in calculating the specular term as 272 

declared in equation 6 was to calculate the coefficient 𝛽𝛽(𝑥𝑥) that depends on producing a specular-free 273 

image (𝐼𝐼𝑆𝑆𝑆𝑆�𝑥𝑥,𝜆𝜆�) which provides partial separation of the specular component. In order to handle this 274 

issue, (Tan and Ikeuchi 2008) pioneered the idea of specular-free image which is a pseudo-diffuse 275 

image that has the same geometrical profile as the true diffuse component of the input image. It can be 276 

generated by subtracting the minimum reflectance image (Imin(x, λ)) of all bands from each pixel in 277 

the input hyperspectral image 𝐼𝐼(𝑥𝑥, 𝜆𝜆) as: 278 

𝐼𝐼𝑆𝑆𝑆𝑆(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼(𝑥𝑥, 𝜆𝜆) − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)                                    (10) 

By substituting the reflectance image 𝐼𝐼(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼𝑆𝑆𝑆𝑆(𝑥𝑥, 𝜆𝜆) + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) from equation 10 into equation 6 279 

𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼(𝑥𝑥, 𝜆𝜆)− 𝑘𝑘(𝑥𝑥)𝛽𝛽(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�, the diffuse component could be easily achieved as: 280 

𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) = 𝐼𝐼𝑆𝑆𝑆𝑆(𝑥𝑥, 𝜆𝜆) + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) − 𝑘𝑘(𝑥𝑥)𝛽𝛽(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)�                 (11) 

For pure specular pixels, the value of 𝑘𝑘(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆)� could be set to one in all wavelengths 281 

yielding the pixel offset term 𝜏𝜏𝑠𝑠 as: 282 

𝜏𝜏𝑠𝑠 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) − 𝛽𝛽(𝑥𝑥)                                      (13) 
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Then, the specular coefficient 𝛽𝛽(𝑥𝑥) can be calculated as: 283 

𝛽𝛽(𝑥𝑥) = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) −  𝜏𝜏𝑠𝑠                                     (14) 

Because the specular-free image 𝐼𝐼𝑆𝑆𝑆𝑆�𝑥𝑥,𝜆𝜆� visually appeared very close to the diffuse component image 284 

𝐼𝐼𝐷𝐷�𝑥𝑥,𝜆𝜆� of the original image 𝐼𝐼(𝑥𝑥, 𝜆𝜆), the pixel offset term 𝜏𝜏𝑠𝑠 could be safely set to a threshold 𝑇𝑇2 that 285 

can generally distinguish pixels of high specularity. This threshold could be calculated from the 286 

minimum image 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) as:  287 

𝑇𝑇2 = 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) + 𝜂𝜂𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚                                     (15) 

where 𝐼𝐼𝑚̅𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) and 𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are the mean and standard deviation of the minimum image 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝜆𝜆) for 288 

all pixels and 𝜂𝜂 is a factor to express the specular degree of an image and it was set to 𝜂𝜂 = 0.5 as 289 

proposed by Shen & Cai (2009). If the minimum value of a pixel is smaller than the threshold 𝑇𝑇2, it 290 

should be a pixel with a diffuse reflectance value. By the knowing the coefficients 𝑘𝑘(𝑥𝑥) and 𝛽𝛽(𝑥𝑥), the 291 

specular and diffuse components can be easily calculated and separated from the original 292 

hyperspectral image (equation 6). Given an input of specular-contaminated hyperspectral image, the 293 

decomposing algorithm should result in two components, the diffuse and specular components. In 294 

Figure 2 are shown the key steps involved in resolving the original hyperspectral image into the 295 

diffuse and specular components. 296 

2.5. Computational procedures 297 

The complete steps of the proposed highlight removal method are outlined in Algorithm 1. The input 298 

of this algorithm is a single 3-D hypercube hyperspectral image (m columns × n rows 299 

× Ω wavelengths). To facilitate the subsequent processing steps, the hyperspectral image was 300 

reshaped into a 2-D matrix in the form of (m×n)×Ω in which each row stores the full spectrum of one 301 

pixel at all wavelengths Ω. In brief, the values of the minimum and maximum reflectance as well as 302 

the minimum and maximum thresholds were first determined and then used for calculating the 303 

specular coefficient ‘𝛽𝛽(𝑥𝑥)’. Then, principle component analysis was carried out on the 2D matrix of 304 

the hyperspectral image and the scores of the first principle component were then used to calculate the 305 

adjusting coefficient ‘𝑘𝑘(𝑥𝑥)’. Finally, the diffuse and specular components were calculated from 306 

equation 11 and 5, respectively. The final step in the procedure includes folding the diffuse and 307 

specular images into 3D forms having the same dimensions as the original hyperspectral image 308 

implying that any sub-image at a certain wavelength λ of the original hyperspectral image is 309 

decomposed into diffuse and specular images at this wavelength. 310 

 311 
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Algorithm 1: Pseudo-code of the algorithm developed for decomposing a hyperspectral image into 312 

diffuse and specular components 313 

[Id, Is] = Algorithm ALG (I) 

start 

1 Read the raw hypercube hyperspectral image ‘I’ in a 3-D form of dimensions ‘m×n×𝛺𝛺’ 

2 Unfold the hypercube from 3-D form into a 2-D matrix of dimensions ‘(m×n)×𝛺𝛺′ 

3 Scale the 2-D matrix to have reflectance values from 0 to 1. 

4 Get the minimum image ‘Imin’ via calculating the minimum reflectance throughout all wavelengths 

5 Get the maximum image ‘Imax’ via calculating the maximum reflectance throughout all wavelengths 

6 Calculate the minimum threshold 𝑇𝑇2 = 𝜏𝜏𝑠𝑠 using equation 15 

7 Calculate the diffuse coefficient 𝛽𝛽(𝑥𝑥) using equation 14 

8 Calculate the maximum value in ‘Imax’ and the maximum threshold 𝑇𝑇2 for segmenting specular pixels 

9 Determine the specular-free image ‘Isf’ using equation 10 

10 Perform principle component analysis of the hypercube and extract the first principle component ‘PC1’ 

11 Fold the column vector ‘PC1’ into a 2D score image 

12           while PC1>0 ‘non-negative constraint’ 

13              Scale the scores in PC1 from 0 to 1 

14             Calculate the mean and standard deviation of the highest specular pixels in PC1 

15             Calculate the adjusting coefficient ‘𝑘𝑘(𝑥𝑥)′  

16 end while 

17 Determine the diffuse reflectance component ’Id’ using equation 11 

18 Determine the specular reflectance component ‘Is’ using equation 5 

19 Fold the resulting components into 2D form as shown in Figure 2 

20 Return Id and Is 

end Algorithm ALG 

 314 

2.6. Textual analysis 315 

The effect of the proposed method in mitigating specularity problem could be evaluated by carrying 316 

out texture analysis of the image to identify the evenness of reflectance before and after specular 317 

removal. Due to the presence of specular highlights that appeared either on the object itself or in the 318 

background, the spectral signatures were drastically affected in a manner not related to the intrinsic 319 

properties of the food samples. If the proposed method was efficient in removing the specular 320 

highlights from the affected pixels in the object or in the background, the resulting spectrum of these 321 

pixels should be completely uniform throughout the spectrum. Thus, a square window (100×100 322 

pixels) was cropped from the object and another window was also cropped from the background in 323 

the hyperspectral image as shown Figure 8b to discover the textural change before and after specular 324 
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removal. Textural characteristics refer to variations in the brightness values, which is very useful in 325 

estimating the effect of specular removal routine applied in this study. The Grey Level Co-occurrence 326 

Matrix (GLCM) technique was used to calculate four different textural features (i.e. Contrast, 327 

Homogeneity, Angular Second Moment ‘ASM’ and Correlation) using the formulas shown below 328 

(Huang et al., 2014; Jiang et al., 2019). For the sake of simplicity, only two parameters (contrast and 329 

homogeneity) were shown in this study to demonstrate the effect of the proposed method of specular 330 

removal in the evenness of the regions that previously affected by specular problem. Images having a 331 

uniform reflectance values in the affected pixels after being treated by specular removal routine 332 

should present low level of contrast and high level of homogeneity. In general, these texture 333 

parameters were determined at different distances (from 𝐷𝐷 = 1 to 𝐷𝐷 = 10) for each pixels in the 334 

GLCM and then averaged to give only one value at each direction (ElMasry et al., 2007). Then, a co-335 

occurrence matrix is a square matrix with elements corresponding to the relative frequency (Pi,j) of 336 

occurrence of pairs of grey level of pixels separated by a certain distance (D) in a given direction (0, 337 

45, 90, or 135°). Each entry (i,j) in the GLCM corresponds to the number of occurrences of the pair of 338 

grey levels i and j which are a distance D apart in the image (Malegori et al., 2016; Jiang et al., 2019). 339 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑖𝑖 − 𝑗𝑗)2              (16)
𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑃𝑃𝑖𝑖,𝑗𝑗

1 + (𝑖𝑖 − 𝑗𝑗)2
                     (17)

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑃𝑃𝑖𝑖,𝑗𝑗 2                                  (18)
𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ (𝑖𝑖𝑖𝑖)𝑃𝑃𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
              (19) 

where ,,, xyx σµµ and yσ  are the means and standard deviations of the sums of rows and columns in 340 

the GLCM matrix, respectively.  341 

 342 

3. Results and Discussion 343 

3.1. Separation of diffuse and specular components 344 

According to the dichromatic model and equation 5 explained above, the acquired hyperspectral 345 

image 𝐼𝐼�𝑥𝑥,𝜆𝜆� with specularity highlight problem should be resolved into the diffuse 𝐼𝐼𝐷𝐷�𝑥𝑥,𝜆𝜆� and 346 

specular 𝐼𝐼𝑆𝑆�𝑥𝑥,𝜆𝜆� components. The diffuse component shows the real reflectance related to the intrinsic 347 

spectral properties of the objects in the scene; meanwhile the specular component shows the areas of 348 

peculiar reflectance across the spectrum. Therefore, the success of any specular removal tool is 349 

evaluated based on its ability of separating these particular components. As shown in Figure 3, the 350 

specularity removal method applied in this study was able to separate both diffuse and specular 351 

components from a raw hyperspectral image of mixed fruits and vegetables acquired in the spectral 352 

range of 400-1000 nm and with spatial dimensions of 1000 × 900 pixels and 300 spectral bands. In 353 
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fact, these two components should be separated at every single band of the hyperspectral image 354 

meaning that every sub-image in the hyperspectral image was resolved into diffuse and specular 355 

components. Due to the limitation of space, only a selected number of bands at 450, 600, 800 and 950 356 

nm are shown covering wavelengths in the spectral range (400-1000 nm). The images shown in 357 

Figure 3 demonstrate how the developed method had the capacity in separating the raw hyperspectral 358 

image (Figure 3a) of mixed fruits and vegetables into the diffuse (Figure 3b) and specular (Figure 3c) 359 

component images. As shown in Figure 3, it is very clear to notice that the appearance of the objects 360 

having the specular problem enhanced significantly and most of the specular regions were potentially 361 

alleviated. Because it is not possible to visualize the hyperspectral image in its current 3-dimensional 362 

hypercube, a pseudo-colour image could be created to see the effect of the specular removal method 363 

on the overall appearance of the hyperspectral image. Thus, when three different bands selected from 364 

the hyperspectral images across the spectrum were concatenated altogether, a pseudo-colour image 365 

was formed. In this example, the bands at 640, 550 and 460 nm were chosen to represent the red, 366 

green and blue channels to compose a pseudo-RGB image shown in the last column of Figure 3. 367 

With the same routine, the proposed method was also very efficient in removing specular highlights 368 

from a hyperspectral image of cured ham slices we acquired ourselves using the same hyperspectral 369 

imaging system in the spectral range of 400-1000 nm. This image has spatial dimensions of 900 ×370 

1650 pixels and 300 spectral bands. It is very obvious to notice from Figure 4 that the specular spots 371 

appeared in some parts of the image have been removed from all bands, leaving diffuse only 372 

reflections in every image slice at different bands without any sign of specular highlights. Most 373 

interestingly, the background pixels suffered from specularity became more homogenous after 374 

removing specular reflectance components from the image that will facilitate all subsequent 375 

processing steps in the image such as segmentation and spatial feature extraction. 376 

Figure 5 shows some hyperspectral images treated by the proposed method for removing specular 377 

highlights from the images. For the sake of simplicity, the original spectral images (first row in Figure 378 

5) and the resulting diffuse only reflectance images (the second row in Figure 5) were presented as 379 

pseudo-colour images in each to evaluate the process before and after specular removal treatment. The 380 

specular reflectance component images were also presented in the third row of Figure 5 to locate the 381 

specular highlight pixels in each image. As explicitly exhibited in images shown in Figure 5, the 382 

proposed method had a substantial capacity in removing specular highlights despite the spectral range 383 

and the acquisition mode of the spectral images. The method was successful in removing specular 384 

highlights from hyperspectral images of band-interleaved by line (bil) format (Figures 5-1, 5-2, 5-3 385 

and 5-4), from a hyperspectral image in band-interleaved by pixel (bip) format (Figure 5-5), from a 386 

hyperspectral image in band sequential (bsq) format (Figure 5-6) and from a multispectral image 387 

acquired wavelength by wavelength sequentially (Figure 5-7). 388 

 389 
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3.2. Effect of specular removal on spectral signatures 390 

To demonstrate the effect of the proposed specularity removal method on the overall quality of the 391 

image, spectral signatures were extracted from different zones in the hyperspectral image especially 392 

from those zones that suffer from specularity problems. Figure 6 shows the spectral signatures of six 393 

different spots in the hyperspectral image of mixed fruits and vegetables. The diffuse and specular 394 

zones were identified with the aid of the specular component of the same image shown in Figure 3c. 395 

Four spectra were extracted from four different specular points (P1, P2, P3 and P4) and two spectra 396 

were extracted from two other areas that did not show specularity (P5 and P6). The highlight removal 397 

method separates the specular and diffuse components at every single pixel position to get the diffuse 398 

image. Because the spectrum at any pixel in the image has been defined as the linear combination of 399 

the specular highlight spectrum and the diffuse spectrum (Tan, Nishino et al. 2004; An, Suo et al. 400 

2015), the pixels that exhibited specularity should obviously have lower reflectance values after 401 

treatment due to removing the specular components from those pixels. Therefore, the spectra of 402 

specular points P1, P2, P3 and P4 that exhibited specularity highlights showed lower reflectance 403 

values along the whole spectral range after being treated by specularity removal method. In Figure 6b, 404 

the raw spectra of specular pixels were plotted in solid lines and the treated spectra resulting after 405 

specularity removal of the same pixels were plotted in dash lines. As the spectra of points P5 and P6 406 

were extracted from diffuse pixels (pixels that did not show specularity highlight problem), their 407 

spectral signatures did not change after being treated and the spectra of those points were noticeably 408 

identical before and after treatment as shown in Figure 6c. Similarly, the spectral signatures of 409 

specular pixels (A1 and A2) in the ham image shown in Figure 6d were remarkably reduced after 410 

being treated with the specular removal method as shown in Figure 6e. More interestingly, the 411 

spectral pattern of fat pixel (A3) remained without change (Figure 6f) as this area contains only 412 

diffuse pixels without any symptoms of specularity highlights as declared in its specular component 413 

image shown in Figure 5c. 414 

The developed method was also evaluated in regards to the change occurred in the location of the 415 

absorption bands in the spectrum. As shown in Figure 6b, the specularity removal treatment only 416 

reduces the magnitude of reflectance (due to removing the specular component from the image) while 417 

preserving the shape and the spectral patterns of the object being examined. For instance, the 418 

absorption band at 680 nm in green banana (P3) and lettuce leaf (P4) is a typical absorption feature of 419 

Chlorophyll, which is still well preserved after the specularity removal step (Fu, Tan et al. 2006). 420 

Figure 7 shows the spectral patterns of all pixels along some horizontal lines in both raw 421 

hyperspectral image and treated image. In general, specular removal treatment led to a reduction in 422 

the pixel intensity at specular points and steadiness of pixel intensity at the diffuse points. For 423 

instance, the maximum relative reflectance of specular pixels along the blue horizontal line drawn in 424 
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the mixed fruit image shown in Figure 7a reduced from 0.95 as shown in Figure 7c to only 0.82 after 425 

being treated with specular removal procedure as shown in Figure 7d. Similarly, the maximum 426 

relative reflectance of specular pixels along the yellow horizontal line passing through tomato fruit in 427 

the mixed fruit image shown in Figure 7a reduced from 0.75 as shown in Figure 7e to only 0.65 after 428 

being treated with specular removal procedure as shown in Figure 7f. Moreover, as shown in Figure 429 

7j, the spectral signatures of background pixels along the horizontal line in the treated meat image 430 

shown in Figure 7g become more homogeneous and flat compared to the spectral signatures of the 431 

same pixels in the original hyperspectral image (Figure 7h). The maximum relative reflectance of 432 

specular pixels in the background regions of Figure 7g declined from 0.68 as shown in Figure 7h to 433 

only 0.54 after specular removal treatment as shown in Figure 7j. Such enhanced form of the 434 

background pixels will facilitate all subsequent image-processing operations such as segmentation or 435 

feature extraction.  436 

 437 

3.3. Textural analysis 438 

Besides the overall visual assessment explained above, it is important to calculate some objective 439 

parameters to evaluate the quality of the resulting image after being treated with the specular removal 440 

method. Figure 8a shows the means of two texture parameters (contrast and homogeneity) extracted 441 

from GLCM at different directions (0, 45, 90 and 135°) of the background region in the hyperspectral 442 

image of meat sample shown in Figure 7g at different bands in the spectral region of 900-1700 nm. As 443 

appeared in Figure 8, the hyperspectral image at different bands (e.g. 950, 1200, 1300 and 1600 nm) 444 

is characterized by high contrast and low homogeneity especially in the background portions due to 445 

specular highlight problem. However, the image after specularity removal exhibited lower contrast 446 

and higher homogeneity compared with the untreated image as clearly shown in texture features 447 

illustrated in Figure 8a.  448 

On the other hand, alleviating specularity problem becomes more critical if the specular highlight 449 

appeared in the examined object itself inside the image. This is because specularity not only affects all 450 

extracted spectral features but also it leads to ambiguous description of this object. For instance, when 451 

the specularity removal pre-treatment was applied on a hyperspectral image of a dry-cured ham 452 

sample with a specular zone located in the ham sample itself, the result was very optimistic in 453 

alleviating the specular problem and improving the quality of the spectral images throughout the 454 

whole spectral range. In a similar way, the textural features (contrast and homogeneity) extracted 455 

from GLCM of the central region of specular highlights area were substantially improved as shown in 456 

Figure 8b. The textural analysis results indicated that the specular removal treatment provided images 457 

with less contrast and high homogeneity at all bands.  458 

 459 

 460 
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3.4. Comparison with other specular removal techniques 461 

The huge amount of pixels in a hyperspectral image does impose great challenges on the aspects of 462 

model expression and computational efficiency (Zheng, Sato et al. 2015). Therefore, the method 463 

proposed in this work was compared with Shen and Cai’s method (Shen & Cai, 2009) that does not 464 

involve iterative process either. The two methods were compared qualitatively based on the overall 465 

separation of the specular component and quantitatively based on the running time and peak signal to 466 

noise ratio (PSNR).  467 

To visually compare the outcomes resulting from both methods, Figure 9 shows the treated 468 

hyperspectral images after removing the specular component from the original hyperspectral images. 469 

Six spectral images of different agro-food products (fat, loin, ham slices, M&M balls, fruits and 470 

vegetables and yellow pepper) were used in such comparison (Figure 9). Instead of comparing both 471 

methods at each single waveband, the pseudo-colour images were only presented to facilitate the 472 

comparison. It is very clear to notice that both methods were very efficient in removing the specular 473 

highlights appeared in all spectral images. The proposed method outperformed the Shen and Cai’s 474 

method in most of the presented spectral images. This could be clearly noticed from the graphs of the 475 

spectral signatures presented in Figure 9 in which the proposed method provides lower magnitudes of 476 

reflectance in all wavelengths, meaning that the proposed method removed more highlights from the 477 

original image. This finding is obvious in case of the multispectral image of the yellow pepper 478 

presented in Figure 9f and their corresponding spectral signatures. Where the proposed method 479 

largely mitigated the specularity highlights from this image, the image resulted from Shen and Cai’s 480 

method still suffers from some specularity in some pixels. However, the results of both methods are 481 

comparable to each other and should be evaluated numerically based on the running time and PSNR 482 

values.  483 

Table 1 summarizes the running time of both methods in treating the six spectral images performed on 484 

a desktop computer of core i5-3470 CPU, 3.2 GHz and 14.0 GB of memory. Moreover, the global and 485 

regional PSNR values of both specular reflection separation methods were also calculated and 486 

presented in Table 1. The global values of PSNR were calculated for the whole spectral images after 487 

being treated by both methods of specularity removal, meanwhile the regional values of PSNR were 488 

only calculated from the specular regions in the images. As can be seen, the proposed method had 489 

higher PSNR compared to Shen and Cai’s method indicating that the proposed method is a bit more 490 

robust and effective in removing the specularity highlights from all tested hyperspectral and 491 

multispectral images except the M&M image. This may be ascribed to the band-interleaved-by-pixel 492 

(bip) format of this image or to the small size of the objects in this image. However, the running times 493 

of the proposed method are relatively slower than Shen and Cai’s method under Matlab environment 494 

but fortunately this kind of pre-treatment methods is not usually applied in real-time applications in 495 
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hyperspectral images. If the important wavelengths were carefully selected from the full spectrum, 496 

this constraint would not be a problem in rapid processing regimes. 497 

 498 

4. Conclusion 499 

One of the most common problems encountered in most hyperspectral and multispectral images of 500 

food objects and other biomaterials is the specularity highlights. The analysis of the examined images 501 

indicated that the proposed method accurately separate reflection components for different 502 

hyperspectral and multispectral images even when images are acquired under different acquisition 503 

modes and configurations. In comparison with the existing methods used for removing specularity 504 

highlights, the proposed method is more robust and preferable because it does not require object 505 

segmentation, iterative operation and user interference for highlights localization. The specular 506 

removal routine helped in enhancing the reflectance features at all wavebands throughout the whole 507 

spectrum leading to consistent spectral data and developing classification or prediction models. 508 

Although the running time is a bit longer, it provides better performance in terms of the quality of 509 

specular removal and higher peak signal to noise ratio (PSNR). Thus, the proposed highlight removal 510 

method looks promising for all spectral imaging scenarios and opens new venues of different 511 

application especially those related to non-destructive evaluation of food products. Improving the 512 

image acquisition, alleviating specularity highlight problem and using the samples without prior 513 

preparation will help in applying this state-of-the art spectral imaging method for a wide range of 514 

tasks in food quality evaluation processes in on-line industrial applications. 515 
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 633 

Figure 1 (a) Pseudo-colour image rendered at 640 nm, 550 nm and 460 nm from a hyperspectral image acquired 634 
in the spectral range of 400-1000 nm for a homogeneous fat layer having a specular zone marked with a red 635 
ellipse at the left-hand side of the image and (b) the corresponding spectral signatures of three diffuse points 636 
(D1, D2 and D3) and two specular points (S1 and S2) inside the specular region adjacent to the diffuse points. 637 
Specular highlights can be observed in the highly reflected zone where it washed out the spatial and spectral 638 
information in this particular spot of the image. After removing specular component from the image, the five 639 
points (D1, D2, D3, S1 and S2) will identically exhibit the same spectral patterns similar to the diffuse points as 640 
the arrow indicated (b). 641 

 642 

  643 
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 644 

Figure 2 A schematic diagram of the decomposition process of a hyperspectral image 𝐼𝐼(𝑥𝑥, 𝜆𝜆) having a 645 

specular highlight problem into diffuse 𝐼𝐼𝐷𝐷(𝑥𝑥, 𝜆𝜆) and specular 𝐼𝐼𝑆𝑆(𝑥𝑥, 𝜆𝜆) components. 646 

 647 

  648 
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 649 

 650 

Figure 3 (a) A raw hyperspectral image (400-1000 nm) of mixed fruits and vegetables at some selected bands 651 
across the spectrum and their corresponding diffuse (b) and specular components (c) at the same bands. A 652 
pseudocolour image shown in the right-hand column was created by rendering the raw, diffuse and specular 653 
images at three different bands (640, 550 and 460 nm) to represent the red, green and blue channels of the 654 
pseudocolour image. Some specular zones are marked in red ellipses in the original image. 655 

 656 
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 658 
Figure 4 (a) A raw hyperspectral image of dry-cured ham slices at some selected bands across the spectrum with 659 
some specular highlights zones appeared in all bands and (b) the corrected image with only diffuse component 660 
after specular removal from all bands. Some specular zones are marked in red ellipses in the original image. 661 

 662 

  663 
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 664 

Figure 5 Effectiveness of the proposed method in removing specular highlights from hyperspectral and 665 
multispectral images. (a) raw spectral images, (b) diffuse component images after removing specular 666 
components and (c) specular component images. Arrows point to the location of specular highlights in the image 667 
as shown in the specular component images. (1-3) hyperspectral image of 300 bands (400-1000 nm) in ‘bil’ 668 
format for a piece of meat, a slice of apple, and dry-cured ham slices, (4) a hyperspectral image of 237 bands 669 
(900-1700 nm) in ‘bil’ format for a piece of meat, (5) a hyperspectral image of 80 bands (400-880 nm) in ‘bip’ 670 
format for M&M balls, (6) a hyperspectral image of 462 bands (400-1000 nm) in ‘bsq’ format for a piece of 671 
citrus and a metal ruler, and (7) a multispectral image of 30 bands (400-700 nm) for artificial and real peppers. 672 
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 675 

 676 

Figure 6 (a) a hyperspectral image with marked six points, (b) spectral signatures of four different specular 677 
points (P1, P2, P3 and P4) before and after specular removal treatment, (c) the spectral signatures of diffuse 678 
points P1 and P2 (that do not exhibit specularity) are typically identical before and after specular removal 679 
treatment, (d) a hyperspectral image of dry-cured ham slices, (e) spectral signatures of two specular points (A1 680 
and A2) before and after specular removal treatment, (f) the spectral signature of a diffuse point A3 of fat pixels 681 
is typically identical before and after specular removal treatment. Raw spectra of the marked points were plotted 682 
in solid lines and the corresponding highlight removed spectra of the same points were plotted in dash lines. 683 
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 686 

Figure 7 Spectral patterns of all pixels along horizontal lines in both raw and treated hyperspectral image (a, b & 687 
g). Specular removal treatment led to a reduction in the pixel intensity at highlight points and steadiness of pixel 688 
intensity at the diffuse points. (c & d) spectral signatures of all pixels along the long blue horizontal line in the 689 
raw and treated mixed fruit image, (e & f) spectral signatures of all pixels along the short yellow horizontal line 690 
in the raw and treated image, (h) raw spectral signature of background pixels along the horizontal blue line 691 
drawn in raw meat image (g), and (j) spectral features of the background pixels along the horizontal blue line 692 
drawn in the treated meat image. 693 
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 695 

Figure 8 Texture features calculated by GLCM method for raw and treated hyperspectral images for (a) background 696 
pixels in the hyperspectral image of meat sample and (b) central region of specular highlights appeared in the 697 
hyperspectral image of the dry-cured ham sample. The raw and corrected images at some bands in the spectrum are 698 
shown in the corner of each graph and the red square locates the position at which the texture values were calculated. 699 

 700 
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 702 

Figure 9 Comparison between the proposed method and the method of Shen and Cai (2009) in removing 703 
specular highlights from hyperspectral images of different agro-food materials. Graphs (a-f) are the 704 
corresponding spectral signatures of specular areas before and after specularity removal treatment by both 705 
methods from hyperspectral images of fat, loin, ham slices, M&M balls, fruits and vegetables and yellow 706 
pepper, respectively. The points at which the spectral signatures were extracted were marked by small circles in 707 
each image. 708 
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Table 1 Running times and peak signal to noise ratio (PSNR) of specularity removal method applied 711 

for different hyperspectral and multispectral images acquired in different spectral ranges. 712 

Image 
Image dimensions 

(𝒎𝒎 × 𝒏𝒏 × 𝛀𝛀) 

Spectral 

range (nm) 

Running time (S) PSNR* 
Shen and 

Cai’s method  

Proposed 

method 

Shen and Cai’s 

method  

Proposed 

method 

Fat 850 × 600 × 300 400-1000 0.61 2.48 76.88(71.02) 77.01(72.32) 

Meat 320 × 650 × 237 900-1700 0.29 0.71 70.48(65.74) 71.33(66.66) 

Ham 900 × 1650 × 300 400-1000 1.01 4.58 75.94(77.80) 76.90(78.57) 

M&M 640 × 700 × 80 400-880 0.26 0.57 89.88(89.66) 85.14(84.99) 

Mixed fruits 1000 × 900 × 300 400-1000 0.63 2.71 80.66(68.52) 82.41(69.96) 

Pepper 512 × 512 × 30 400-700 0.34 1.08 83.02(73.78) 85.73(75.72) 

* Regional values of PSNR are written between two parentheses. 713 
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