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17 Abstract

18 The performance of co-extruded alginate coatings containing no extra additives (A), 

19 polyglycerol esters of fatty acids (EA), or pea protein (PA) was assessed as an alternative to 

20 collagen casings (C) for the manufacturing of dry-fermented sausages (fuet) with no 

21 inoculation of moulds and without a fermentation step (NMNF) and fuet inoculated with 

22 Penicillium candidum and fermented (MF).

23 Stuffing into collagen casings resulted in slower sausage drying kinetics compared with alginate 

24 coating. No significant differences in aw were observed among the studied casing types for 

25 NMNF and MF fuets and for the evolution of the technological and spoilage microorganisms. 

26 Fuets coated with A, EA, and PA showed lower pH values than fuets stuffed in collagen casings. 

27 No significant differences on sensory properties between casing types were observed. 

28 Therefore, alginate coatings would be a feasible alternative to collagen casing from a 

29 technological and safety point of view.

30

31 1. Introduction

32 Dry-fermented sausage manufacturing involves grinding of meat and back fat, mixing with salt, 

33 spices and other ingredients and additives, and stuffing into casings. After stuffing, sausages 

34 are fermented to the desired pH and dried to the target water content, at the appropriate 

35 temperature and air humidity. Traditionally, dry-fermented sausages have been stuffed into 

36 natural casings made from animal intestine (sheep, pork, and beef) and into artificial casings 

37 mainly consisting of collagen, cellulose, or plastic. Natural casings are still a very popular choice 

38 all over the world. However, they can be contaminated by enteric bacteria, as well as 

39 exogenous microorganisms, mainly due to the lack of hygiene during slaughter, post-

40 processing handling and due to high storage temperatures (Trigo & Fraqueza, 1998). Artificial 

41 casings offer several advantages over their natural counterparts including a more uniform size, 

42 strength and flexibility for varying processing conditions, a lower variability in the product 
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43 weight, and a cleaner, more hygienic product (Kutas, 1987). However, like natural casings, 

44 artificial casings are of a finite length and thus sausage stuffing remains a batch process.

45 The sausage casings sector has a global market share of more than €4.2 billion per year, with 

46 continuous growth of artificial casings (Adzaly, Jackson, Villalobos-Carvajal, Kang, & Almenar, 

47 2015). The importance of the sector has led to innovations in the sector, such as new highly 

48 productive casing technology: co-extrusion. A co-extrusion system is a fully automated system 

49 that simultaneously extrudes a continuous flow of meat batter and a thin layer of casing 

50 material. The most commonly used co-extruded casing materials are composed of calcium 

51 alginate. The principle of the co-extrusion process takes advantage of the solubility of alginates 

52 in cold water and the ability of sodium alginate to develop strong and elastic gels on exposure 

53 to calcium ions. Higher productivity, and lower raw material and production costs in 

54 comparison with traditional processes are the main advantages highlighted by the suppliers of 

55 this technology (Kamenik, 2014). Additionally, alginate coatings are a vegetable-based 

56 alternative to animal-based and artificial casings. They are edible, and suitable for vegetarian, 

57 halal and kosher products. 

58 Alginates are polysaccharides obtained from the cell walls of brown seaweed, from which they 

59 are extracted in the form of alginic acid (Lamkey, 2009). They are composed of β-D-

60 mannuronic acid (M) and α-L-guluronic acid (G) in varying proportions, sequence, and 

61 molecular weight. Alginate gellation takes place when divalent or multivalent ions (usually 

62 Ca2+) interact ionically with blocks of guluronic acid residues from two different chains 

63 resulting in a three-dimensional network (Braccini & Perez, 2001; King, 1983). The 

64 performance of alginate films is highly dependent on the processing conditions (e.g. mixing 

65 speed), as well as on the alginate coating composition (e.g. presence of ions, pH) 

66 (Comaposada, Gou, Marcos, & Arnau, 2015; Harper, Barbut, Smith, & Marcone, 2015; Marcos, 

67 Gou, Arnau, & Comaposada, 2016; Senturk Parreidt, Schott, Schmid, & Müller, 2018). The 

68 application of alginate co-extrusion for the manufacture of dry fermented sausages has 
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69 focused on the prevention of surface efflorescence formation (Hilbig, Hartlieb, Gibis, 

70 Herrmann, & Weiss, 2020; Hilbig, Murugesan, Gibis, Herrmann, & Weiss, 2019; Walz et al., 

71 2018). However, to the knowledge of the authors, the impact of alginate coatings on the 

72 drying process and final quality of dry fermented sausages hasn’t been studied. In a previous 

73 study, Comaposada et al. (2018) reported modifications of water and oxygen transfer in 

74 composite films consisting of alginate, protein and surfactant compared to alginate films with 

75 no additives in in vitro tests. The authors concluded that there is a need to evaluate the 

76 industrial performance of composite coatings to improve the properties of standard casings. 

77 Thus, the objective of the present work was to fill the gap of knowledge about the impact of 

78 co-extruded composite alginate coatings on the manufacture of dry-fermented sausages. With 

79 this purpose, the performance of different compositions of alginate coatings as an alternative 

80 to artificial casings for the manufacture of small calibre dry-fermented sausages (fuet) was 

81 evaluated.
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82 2. Materials and methods

83 2.1. Dry sausage (fuet) manufacturing

84 Two types of dry sausages (fuet type) were produced: non-mould non-fermented fuet (NMNF) 

85 produced without addition of starter culture nor mould to surface, and mould-fermented fuet 

86 (MF) produced with addition of starter culture and surface inoculation of mould.

87 Fuets were manufactured with 70% of pork shoulder and 30% of pork belly using the following 

88 formula (g/kg of shoulder and belly blend): sodium chloride (18), sodium nitrite (0.15), 

89 potassium nitrate (0.15), sodium ascorbate (0.5), dextrose (2), lactose (20) (all additives from 

90 Merck KGaA, Darmstadt, Germany) and black pepper (3). Formula of MF fuet also included 0.1 

91 g/kg of starter culture TEXEL® SA 306 (Danisco® DuPont™, Copenhagen, Denmark).

92 Lean pork meat and fat were minced in a mincer with an adjustable plate set at a hole 

93 diameter of 5 mm. The minced meat was mixed using a vacuum mixer model 35P (Tecnotrip 

94 S.A., Terrassa, Spain) with the ingredients at 0 ºC for 3 minutes in a vacuum mixer. At this 

95 point, the meat batter was either stuffed into collagen casings using a vacuum stuffer or co-

96 extruded with an alginate coating using the vacuum stuffer with a co-extruding unit developed 

97 in a mechanical workshop nearby for this specific activity (Figure 1). Four different casings 

98 were used for each type of fuet (NMNF and MF): Collagen (C), stuffed in 40 mm diameter 

99 collagen casings (Fibran S.A., Sant Joan de les Abadesses, Spain); Alginate (A), co-extruded with 

100 a coating containing 2 % of sodium alginate (Alcogel 6061, Cargill France S.A.S, Saint-Germain-

101 en-Laye, France); E 475 alginate (EA), co-extruded with a coating containing 2 % of sodium 

102 alginate and 1% of polyglycerol esters of fatty acids (E 475, Lasenor Emul, S.L., Olesa de 

103 Montserrat, Spain); and pea protein alginate (PA), co-extruded with a coating containing 2 % of 

104 sodium alginate and 1 % of pea protein (Provital Group, Barcelona, Spain). The concentrations 

105 of A, EA and PA were selected according to the results obtained in Comaposada et al. (2018). 

106 One percent of EA reduced mass transfer properties, and PA was limited to 1% due to its 

107 negative effect to the mechanical properties of the film. After the co-extrusion, the sausages 
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108 coated with alginate solutions (A, EA, and PA) were cross-linked by immersion in a 30 % 

109 calcium chloride (Cargill Inc., Minneapolis, MN, USA) solution. 

110 After stuff casing/coating MF fuets were surface inoculated by immersion into a solution of 

111 Penicillium candidum spores (CHOOZIT™ Cheese Cultures, Danisco) and subjected to a 

112 fermentation process (36 h at 21.5 ± 0.1 ºC and 86.9 ± 3.2 % RH). Afterwards, the sausages 

113 were hung in a drying chamber until an average weight loss of 40 % was achieved. Average 

114 drying conditions were: 12.7 ± 1.0 °C and 74.5 ± 2.6 % air relative humidity (RH) for NMNF 

115 fuets and 13.1 ± 0.5 °C and 71.6 ± 6.3 % RH for MF fuets. The dryer needed about 20 % of the 

116 daily time to maintain the drying conditions with an air velocity of 0.15 ± 0.08 m/s.

117 A minimum of 25 sausages per casing type (C, A, EA, PA) were produced for each fuet type 

118 (NMNF, MF). Two independent manufacturing batches were carried on.

119 2.2. Drying process monitoring

120 During the drying process, five sausages per casing type (C, A, EA, PA) for each fuet type 

121 (NMNF, MF) were monitored for weight control until an average weight loss of 40 % was 

122 achieved. Weight loss (%), weight loss rate (% weight loss/day) and drying time (days) were 

123 calculated at the end of the drying process. The calibre of sausages were measured using a 

124 Vernier caliper.

125 Temperature, relative humidity and velocity of air were monitored in each batch with a data 

126 logger Testo 400 (Testo SE & Co. KGaA, Lenzkirch, Germany).

127 2.3. Effective diffusivity

128 Effective diffusivity (De) was determined using IRTAsim (IRTAsim, 2018), an online tool 

129 developed on Matlab, which implements mass transfer equations and heat transfer equations 

130 (Trigo & Fraqueza, 1998). Mass and heat transfer is modelled approximating stuffed products 

131 to a porous infinite vertical cylinder. 
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132 IRTAsim tool allows to estimate the De coefficients as a function of water content when the 

133 drying curve of a product is given together with the drying air conditions (temperature, relative 

134 humidity, air speed and time in which air is in forced movement), sausage initial water content 

135 and size(diameter, length) (http://irtasim.irta.cat).

136 The De was calculated considering the sausage water content changes during the drying 

137 process (Equation 1):

138  (1)𝐷e = exp (𝑎𝑥 + 𝑏 ‒
53467

𝑅𝑇 )

139 where De is the effective diffusivity (m2/s), ?? and b are the De equation coefficients, x is  the 

140 water content (kg/kg dry mater), R is the gas constant (J·K-1·mol-1) and T is temperature (K).

141 For comparative purposes, De was calculated for each sausage by Equation 1 and it was 

142 averaged in a water content range between 0.5 and 1.5 kg water / kg dm. 

143 2.4. Physico-chemical analysis

144 Three sausages per casing type (C, A, EA, PA) for each fuet type (NMNF, MF) were sampled for 

145 physico-chemical analysis before drying and at the end of the drying process. The fat content 

146 of meat paste before drying was determined by triplicate using a FoodScan™ Lab (Foss 

147 Analytical, Hillerød, Denmark) device. The water content of fuets was determined in duplicate 

148 by drying the minced samples at 103 ± 2°C until reaching a constant weight (AOAC, 1990). The 

149 pH values were measured in triplicate using a portable Crison penetration electrode connected 

150 to a Crison pH meter PH25 (Crison Instruments S.A., Alella Spain). Water activity (aw) was 

151 measured in duplicate at 25°C with an Aqualab equipment (Decagon Devices, Inc. Pullaman, 

152 Washington, USA). The average of replicates were recorded for statistical analysis. 

153 2.5. Instrumental colour analysis
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154 Colour was measured using a Minolta CR-410 Chroma Meter (Minolta, Co., Ltd., Japan), with 

155 illuminant D65, 2° standard observer angle, and 50 mm port size. Colour measurements were 

156 taken on the surface and interior (transversal section) of fuets and averaged over three zones 

157 (upper, middle, and bottom). Colour coordinates were determined using the 1976 CIEAB 

158 system and the results expressed as L* (lightness), a* (redness), and b* (yellowness). Five 

159 sausages per casing type (C, A, EA, PA) for each fuet type (NMNF, MF) were used for surface 

160 colour measurements and three sausages for internal colour measurements at the end of the 

161 drying process. The average of three readings was used for analysis.

162 2.6. Microbiological analysis

163 Sampling was performed at days 0 (after stuff casing/coating), 3, 7, and 15 of the drying 

164 process. At each selected time, 25 g of fuet were 10-fold diluted in sterile BHI broth (Brain 

165 heart infusion, DB, NJ, USA). The solution was homogenised for 1 minute in a Masticator 

166 Classic (IUL S.A., Barcelona, Spain). After appropriate dilutions, the following determinations 

167 were carried out: lactic acid bacteria (LAB) were enumerated by pour plating in MRS agar 

168 (Merck KGaA, Darmstadt, Germany) incubated anaerobically at 30°C for 72 h; 

169 Enterobacteriaceae were enumerated by pour plating in violet red bile glucose agar (Merck) at 

170 30°C for 24 h. Three sausages per casing type (C, A, EA, PA) for each fuet type (NMNF, MF) 

171 were measured. Two replicates per sausage were performed.

172 2.7. Sensory analysis

173 Quantitative Descriptive Analysis (Stone, Sidel, Oliver, Wooley, & Singleton, 1974) was carried 

174 out to assess the appearance, taste/ flavour and texture of fuet. The panel consisted of six 

175 trained assessors (ISO 8586-1, 1993; ISO 8586-2, 1994). The generation and selection of 

176 descriptors was carried out by open discussion in three sessions prior to the experiments. The 

177 descriptors retained for the sensory profile are described in Table 1. As detailed in Table 1, 

178 some descriptors were assessed on the whole fuet piece and others on 5 mm-thick slices. In 
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179 addition, some attributes (odour: mould and ripened; flavour: ripened) were only evaluated in 

180 mould fermented (MF) fuets because they were not present in non-mould non-fermented 

181 (NMNF) fuets. A non-structured scoring scale (Amerine, Pangborn, & Roessler, 1965) was used, 

182 where 0 and 10 meant absence and the highest intensity of the descriptor, respectively. 

183 Sensory evaluation was undertaken in 6 sessions for each fuet type (3 sessions for each 

184 manufacturing batch) using a complete block design (Steel, Torrie, & Dickey, 1997), where 

185 each assessor evaluated one fuet from each casing type in each session. Samples were 

186 presented to the assessors balancing the first order and the carry over effects according to 

187 MacFie, Bratchell, Greenhoff, & Vallis (1989).

188 2.8. Statistical analysis

189 Data obtained from non-mould non-fermented (NMNF) fuet and mould fermented (MF) fuet 

190 were analysed separately with the General Linear Models procedure in the SAS program, 

191 version 9.4 (SAS Institute Inc., Cary, NC, USA). The linear model included the casing type as a 

192 fixed effect and the manufacturing batch as a block effect. The model also included as fixed 

193 effects, the sampling time and its interaction with the casing type for the microbiological 

194 indicators, and the assessor and the tasting session (nested to manufacturing batch and 

195 assessor) for the sensory data. Least square means were calculated and the differences were 

196 tested with the Tukey test (p<0.05).

197

198 3. Results and discussion

199 3.1. Drying parameters

200 The drying parameters measured during the manufacturing process of non-mould non-

201 fermented (NMNF) and mould-fermented (MF) fuets are summarized in Tables 2 and 3. Weight 

202 losses in a range of 39.6% to 42.7% were obtained among the different casing types in both 

203 fuet types (NMNF and MF). Stuffing into collagen casings (C) resulted in slower drying of NMNF 

204 fuets (p<0.05) compared to coating with alginate solutions. The De of NMNF fuets with C 

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

205 casings also tended to be lower than the ones with alginate coatings. These results confirm in 

206 real production conditions those obtained by Comaposada, Marcos, Bou, & Gou (2018) using in 

207 vitro conditions where non fermented salami slices covered with collagen films without 

208 moulds showed lower weight loss rate than those covered with alginate films. As suggested by 

209 Walz et al. (2018), differences observed in sausages stuffed in collagen and alginate casings 

210 could be related to differences in the pore size of the casings. The pore size of collagen casings 

211 have been reported to be around 5 nm (Gong et al., 2016), while the pore size of alginate films 

212 (1.5-3.5% alginate) have been found to be in a range of 158-243 µm. This fact could explain the 

213 lower weight loss rate observed in C fuets. The weight loss rate of MF fuets with C casing was 

214 also lower, while the De became similar among the fuets with the different coatings. This is 

215 because the calculation of De integrates the effect of the initial diameter, which is bigger with 

216 the C casing fuets. Moreover, the presence of moulds can influence the water vapour 

217 transmission through the casing/coatings making it more uniform. In agreement with this 

218 results, Comaposada et al. (2018) reported a significant decrease of weight loss rates of salami 

219 slices covered with alginate films containing surfactant E 475. Senturk Parreidt et al.(2018) 

220 related the decreased rate of moisture loss in alginate coatings containing surfactants with the 

221 reduced superficial water activity. However, no significant differences in weight loss rate 

222 between the different alginate coating types used (A, EA, and PA) were observed. The present 

223 study showed that in real production conditions, the addition of 1% of polyglycol esters of 

224 fatty acids (E 475) was not enough to significantly modify water transfer through alginate 

225 coatings. 

226 Although NMNF and MF fuets achieved a similar weigth loss they had differences in the 

227 moisture content due to the differences in fat content of the meat paste before drying: 16.7 ± 

228 2.6 % in NMNF and 21.3 ± 4.1 % in MF. Similarly, the lower weight loss rates and De of MF fuets 

229 were also attributed to their higher fat content. Palumbo et al. (1977) and Mulet et al. (1992) 

230 also reported lower De coefficients in their meat products when fat content increased. 
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231 NMNF fuets coated with alginate presented higher moisture (p<0.05) than fuets stuffed in 

232 collagen casings at the beginning and at the end of processing (Table 2). Walz et al. (2018) also 

233 reported higher moisture content on sausages coated with alginate compared to those stuffed 

234 in collagen casings, mainly due to the high moisture content of the alginate coating itself. 

235 Comaposada et al. (2018) described similar differences in moisture content between both 

236 casing types, which were attributed to the different type and concentration of salt present in 

237 alginate coatings (calcium chloride) and in the collagen casings (sodium chloride). No 

238 significant differences in moisture content at the end of the drying process were detected 

239 (Table 3).

240 No significant differences in the aw of fuets were observed among the studied casing types for 

241 any of the fuet types (NMNF and MF). It is important to highlight that all the studied samples 

242 of fuet presented aw values lower than 0.92. Thus, according to Regulation (EC) 2073/2005 

243 these type of fuets are considered ready-to-eat foods unable to support the growth of Listeria 

244 monocytogenes (European Commission, 2005). These results indicate that the use of co-

245 extruded alginate as an alternative casing system to commercial collagen casings would not 

246 compromise the food safety of these products with regard to L. monocytogenes.

247

248 3.3. Colour parameters

249 The colour of the product is a very important quality factor for dry-cured meat products 

250 (Morales, Guerrero, Claret, Guàrdia, & Gou, 2008). Instrumental colour measurements 

251 revealed significant differences among the studied casing types (Tables 2 & 3) on the product 

252 surface, but not in the internal part (transversal section). 

253 NMNF fuets coated with alginate (A, EA and PA) showed a slight increase of the superficial a* 

254 value compared to those stuffed in collagen casings (C). A fuets also showed a slight decrease 

255 of the superficial b* value. MF fuets, coated with A and EA showed a slight decrease of the 

256 superficial a* values with respect to C and PA fuets. A and EA fuets also showed higher 
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257 superficial L* values (p<0.05), mainly due to the higher growth of white mould on the surface 

258 of those fuets (Figures 2 & 3). Except for the L* value at the surface in MF, the rest of the 

259 differences between C fuets and those coated with alginates were not important, including the 

260 internal colour. Therefore, the obtained results confirm that colour would not be a drawback 

261 for the use of alginate coatings as an alternative to traditional casings for this type of product.

262

263 3.4. Evolution of microbiological indicators and pH values

264 The statistical analysis revealed that the interaction between the sampling time and the casing 

265 type was not significant. The type of casing effect was not significant for the selected microbial 

266 indicators (LAB and Enterobacteriaceae), but the sampling time effect was significant.

267 The evolution of LAB, Enterobacteriaceae and the pH values was very different depending on 

268 the product type (Figures 4 and 5). NMNF fuets presented initial LAB counts of 2.0-2.3 log 

269 CFU/g. Endogenous LAB population increased gradually throughout the drying process, with a 

270 maximum increase of 3.3-3.4 log units detected at the end of the process (day 15). MF fuets, 

271 inoculated with a starter culture of LAB at levels of 5.4-5.5 log CFU/g, showed similar increases 

272 (3.2-3.5 log units), but the maximum growth was achieved much earlier, at the 3rd day of 

273 drying. MF fuet showed higher LAB counts (p<0.05) than NMNF fuet throughout the drying 

274 process, resulting in significantly lower pH values in MF fuets, as previously reported. No 

275 significant growth of Enterobacteriaceae was observed in NMNF fuets, while a decrease of 1 

276 log unit (p<0.05) was observed in MF fuets (Figures 4 and 5). The control of Enterobacteriaceae 

277 growth is essential to prevent quality and safety defects such as the formation of off-flavours 

278 and biogenic amines (Garriga et al 1996; Maijalaet al, 1995). The pH drop within the first days 

279 of the process contributed to reduce endogenous Enterobacteriaceae population in fuets 

280 inoculated with starter culture (MF). 
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281 Although no significant differences among casing types were observed on the evolution of the 

282 technological (LAB) and spoilage (Enterobacteriaceae) microorganisms, fuets stuffed in A, EA, 

283 and PA coatings showed lower pH values than the ones stuffed in collagen casings (C) for both 

284 fuet types (NMNF and MF) which could contribute to improve the food safety of these type of 

285 products. These results confirm that the use of alginate coatings would be a feasible 

286 alternative to the use of collagen casing from a technological and safety point of view.

287 3.5. Sensory analysis

288 Visual assessment of NMNF revealed that alginate coated fuets showed significantly lower 

289 brightness and colour intensity than C fuets (Table 4). While in MF fuets no colour differences 

290 were detected between A and C fuets (Table 5). 

291 No significant differences in global odour or flavour intensities between casing types were 

292 detected for NMNF and MF fuets. However, some specific odour and flavour differences were 

293 detected in MF fuets. Mould and ripened odour, and flavour were more intense in alginate 

294 coated MF fuets than in C fuets, probably due to the higher presence of white mould on their 

295 surface (Figure 2). Moulds are known to provide a pleasant appearance and contribute to the 

296 development of the taste and aroma of fermented meat products (Cook, 1995).

297 Calcium chloride used to cross-link alginate coatings can produce bitter taste (Frye, Hand, 

298 Calkins, & Mandigo, 1986; Hand, Terrell, & Smith, 1982; Lawless, Rapacki, Horne, & Hayes, 

299 2003). However, no bitterness was noticed in any A fuets. 

300 Collagen casings were removed before the sensory analysis, while alginate coated fuets were 

301 evaluated with the coating. Consequently, the sensory analysis revealed that the alginate 

302 coating was clearly perceived by the assessors (data not shown). 

303 Both NMNF and MF fuets stuffed in collagen casings showed lower values of hardness and 

304 tactile waxy feeling than alginate coated fuets. Similarly, the assessors found fuets stuffed in 

305 collagen casings to be less hard and more crumbly in the mouth. NMNF fuets stuffed in 

306 collagen casings also showed lower elasticity and gumminess than those coated with alginate. 
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307 The higher pH in C fuets (Tables 2 and 3) could partly explain the differences in texture. The 

308 consistency of fermented sausages increases due to acidification and drying, as the pH decline 

309 during fermentation results in myofibrillar protein aggregation to form a gel (Arnau, Serra, 

310 Comaposada, Gou, & Garriga, 2007).

311

312 4. Conclusions

313 The reported results have shown that the differences observed during the drying process of 

314 alginate coated and collagen stuffed fuets did not affect the product stability (aw and pH). 

315 Moreover, no remarkable differences on the internal colour and sensory properties of A fuets 

316 compared to C ones would support the use of co-extruded alginate as an alternative to 

317 artificial casings. These results confirm that the use of alginate coatings would be a feasible 

318 alternative to collagen casing for the production of fuet type small-calibre dry-fermented 

319 sausages from a technological and safety point of view. The potential of producing other types 

320 of dry-fermented meat products should be explored.

321 However, the additives used to produce composite coatings (polyglycerol esters of fatty acids 

322 and pea protein) did not improve the properties of alginate coatings. Further research in order 

323 to improve alginate based composite coatings for the production of dry-fermented meat 

324 products should be performed.
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Figure 1. Pilot equipment for co-extrusion of the meat batter with the alginate coatings.



Figure 2. Image of fuets MF at the beginning of the drying process (day 3). From left to right C, 
A, EA, PA.

Figure 3. Image of fuets MF at the end of the drying process. From left to right C, A, EA, PA.



Figure 4. LAB (a), Enterobacteriacea (b) levels, and pH values (c) during the drying process of 
non-mould non-fermented fuet (NMNF). C: Colllagen; A: Alginate; EA: E 475 alginate; PA: pea 
protein alginate.
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Figure 5. LAB (a), Enterobacteriacea (b) levels, and pH values (c) during the drying process of 
mould-fermented fuet (MF). C: Colllagen; A: Alginate; EA: E 475 alginate; PA: pea protein 
alginate.
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Table 1. Definition of sensory parameters used in the Quantitative Descriptive Analysis of 
fuets.

Descriptors1 Definition

Appearance (slice)

Colour intensity Red colour intensity on a transversal section (on a freshly cut)
Brightness Brightness intensity evaluated on a transversal section (on a 

freshly cut)
Odour (slice)

Intensity Overall odour intensity of fuet
Mould Intensity of mould odour
Ripened Pleasant odour characteristic of dry-fermented sausages

Taste and flavour (slice)

Flavour Intensity Overall flavour intensity of fuet
Sourness Basic flavour sensation elicited by lactic acid
Bitterness Basic taste sensation elicited by L-Tryptophan
Ripened Pleasant flavour characteristic of dry-fermented sausages

Texture (tactile; whole 
piece)

Hardness Amount of pressure required to completely compress the sample
Waxy Resembling wax when touching

Texture (slice)

Hardness Force required to bite through the sample
Elasticity Degree of return to the original position of the sample when a 

compression force is applied between molars
Crumbliness Texture property characterized by the ease with which

the product can be separated into smaller particles during 
chewing

Gumminess Texture property of a sample which resembles or of the 
consistency of gum



Table 2. Drying, physico-chemical, and colour parameters of non-mould non-fermented 
(NMNF) fuet.

Parameters C A EA PA RMSE
Weight loss (%)1 39.6b 41.0a 40.4ab 40.0ab 1.2
Drying time (day)1 17.8a 17.3b 17.3b 17.3b 0.2
Weight loss rate (% weight loss/day)1 2.25b 2.41a 2.38a 2.36a 0.06
De (x10-11) 2.42 3.03 2.33 2.28 0.87
Calibre0 (mm)1 36.5 36.1 36.4 36.0 0.6
Calibref (mm)1 33.4 33.1 33.5 34.3 1.1
Moisture0 (%)2 62.2b 63.6a 63.7a 63.7a 0.7
Moisturef (%)2 36.9b 39.5a 39.0a 38.9a 1.0
aw,0

2 0.975 0.975 0.977 0.975 0.001
aw,f

2 0.912 0.919 0.918 0.915 0.004
pH0

2 5.75a 5.69ab 5.68b 5.67b 0.04
pHf

2 5.73a 5.56b 5.52c 5.51c 0.07
L*f, surface

2 41.8a 38.4b 41.0ab 40.7ab 2.4
a* f, surface

2 6.4b 8.1a 7.9a 8.7a 1.0
b* f, surface

2 1.3a 0.3b 1.0ab 1.0ab 0.8
L*f, internal

2 45.0 46.1 45.1 46.7 2.3
a*f, internal

2 9.9 9.8 9.7 9.5 0.8
b*f, internal

2 3.0 2.8 2.4 2.7 0.7
C: Collagen; A: Alginate; EA: E 475 alginate; PA: pea protein alginate; RMSE: root mean square error; 1n=5; 2n=3; 
 0: day 0 (before drying); f: end of drying process; surface: colour measured on the surface of fuet; interior: colour 
measured on the transversal section of fuet. Different letters within a row indicate significant differences between 
batches (p <0.05).



Table 3. Drying, physico-chemical, and colour parameters of mould-fermented (MF) fuet.

Parameters C A EA PA RMSE
Weight loss (%)1 39.9c 41.7b 42.4ab 42.7a 0.8
Drying time (day)1 20.3a 19.8b 19.8b 19.8b 0.2
Weight loss rate (% weight loss/day)1 2.03c 2.16b 2.20ab 2.21a 0.04
De (x10-11) 2.14 2.02 1.97 1.97 0.34
Calibre0 (mm)1 36.6a 34.1c 35.2b 35.2b 0.8
Calibref (mm)1 31.2 29.9 29.8 29.6 1.6
Moisture0 (%)2 58.6b 58.9b 60.9a 60.7a 0.8
Moisturef (%)2 33.0 32.8 32.2 32.5 1.1
aw,0

2 0.974ab 0.973b 0.974ab 0.975a 0.001
aw,f

2 0.900 0.887 0.888 0.863 0.027
pH0

2 5.89a 5.79ab 5.77b 5.76b 0.07
pHf

2 5.10a 4.93c 4.98b 4.97bc 0.03
L*f, surface

2 58.9b 70.8a 69.6a 61.2b 5.8
a* f, surface

2 2.6a 0.6b 0.7b 3.2a 1.5
b* f, surface

2 3.7 4.5 4.1 3.7 0.8
L*f, internal

2 49.7 50.2 48.4 48.2 1.6
a*f, internal

2 8.5 9.1 9.1 9.1 0.6
b*f, internal

2 2.6 2.7 2.1 2.1 0.5
C: Collagen; A: Alginate; EA: E 475 alginate; PA: pea protein alginate; RMSE: root mean square error; 1n=5; 2n=3;
 0: day 0 (before drying); f: end of drying process; surface: colour measured on the surface of fuet; interior: colour measured 
on the transversal section of fuet. Different letters within a row indicate significant differences between batches (p <0.05).



Table 4. Sensory analysis of non-mould non-fermented (NMNF) fuet.

Descriptors C A EA PA RMSE
Appearance

Colour intensity 6.3a 5.4b 5.0b 5.4b 1.0
Brightness 4.6a 3.8b 3.8b 3.9b 0.8

Odour
Intensity 5.8 5.6 5.2 5.1 0.5

Flavour
Intensity 5.8 5.4 5.7 5.3 0.8
Sourness 2.3 2.7 2.8 2.6 1.2

Texture (tactile)
Hardness 4.0 c 5.0 a 5.8 a 5.4 ab 1.1
Waxy 1.5 b 3.4 ab 3.3 a 3.8 a 1.5

Texture (mouth)
Hardness 3.3c 4.1 bc 5.1 a 4.7 ab 1.0
Elasticity 2.5 c 2.9 bc 3.6 ab 3.7 a 1.4
Crumbliness 6.1 a 5.1 b 4.9 b 5.0 b 1.0
Gumminess 2.1 b 2.9 a 3.2 a 3.1 a 1.2
C: Collagen; A: Alginate; EA: E 475 alginate; PA: pea protein alginate; RMSE: root mean square error; 
n=6. Different letters within a row indicate significant differences between batches (p <0.05).



Table 5. Sensory analysis of mould-fermented (MF) fuet.

Descriptors C A EA PA RMSE
Appearance

Colour intensity 5.2ab 4.8b 5.0ab 5.3a 0.9
Brightness 3.7 3.5 3.7 4.0 0.7

Odour
Intensity 6.0 5.9 5.7 5.9 0.9
Mould 1.3b 2.2a 2.2a 2.2a 0.9
Ripened 3.8b 4.5a 4.3ab 4.2ab 0.8

Flavour
Intensity 6.0 5.5 5.6 5.7 0.8
Sourness 3.3a 3.4a 3.1ab 2.7b 1.0
Ripened 3.1b 3.7a 3.8a 4.2a 0.9

Texture (tactile)
Hardness 4.7 b 5.7 a 5.8 a 6.2 a 1.0
Waxy 2.3 b 4.3 a 4.0 a 4.3 a 1.7

Texture (mouth)
Hardness 4.1b 4.3 ab 4.7 a 4.8 a 0.7
Elasticity 2.6 2.6 2.5 2.8 0.8
Crumbliness 6.0a 5.7ab 5.5 b 5.2 b 0.8
Gumminess 2.2 1.8 2.1 2.0 0.6

C: Collagen; A: Alginate; EA: E 475 alginate; PA: pea protein alginate; RMSE: root mean square 
error; n=6. Different letters within a row indicate significant differences between batches (p 
<0.05).
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