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Abstract  23 

CD36 glycoprotein is a candidate receptor involved in the gustatory detection of lipids and 24 

emerging evidence has suggested that genetic variations in CD36 may modulate the oral 25 

perception threshold to fatty acids. Here, we analyzed the association of -31118 G>A 26 

polymorphism in CD36 gene with nutritional status and preferences for fatty foods in Mexican 27 

children. Genotyping of SNP rs1761667 was performed in school-age children (n= 63) in addition 28 

to sensory tests evaluating the preference and satisfaction score assigned to oil-based sauces of 29 

different fatty acid composition. The G allele was associated with high BMI z-score in children 30 

(OR = 2.43, 95% (CI 1.02-5.99); p = 0.02) but CD36 genotypes (AA, GA, and GG) did not show 31 

significant association with the preference and satisfaction scores assigned to oil-based sauces. 32 

The BMI z-score showed no association with the preference to oil-based sauces; however, 33 

children with normal weight gave higher satisfaction scores to sauces with a high content of 34 

unsaturated fatty acids than to sauces rich in saturated fatty acids (0.56 ± 1.26 vs. 0.06 ± 1.22; p 35 

= 0.02). Therefore, the G allele of -31118 G>A SNP in CD36 gene is associated with overweight 36 

and obesity in Mexican children but do not appear to modulate the preferences and satisfaction 37 

scores to fat. 38 

Keywords: childhood obesity, CD36 polymorphism, olive oil, avocado oil, fat food preferences.  39 
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 45 

Introduction  46 

Childhood obesity has reached an alarming prevalence worldwide to the point of becoming an 47 

epidemic [1]. Mexico is ranked among the leading countries with the highest prevalence of 48 

overweight and obesity in children with an estimated prevalence of 33% [2]. This condition 49 

often has a harmful effect on health in adulthood as epidemiological studies have shown an 50 

association of early obesity with an excess mortality rate in adults (from 50 to 80%). In obese 51 

children, several short-term pathologies appear, such as hyperinsulinemia, increased blood 52 

pressure and abnormalities of blood lipids, including hypertriglyceridemia, decreased high-53 

density lipoprotein cholesterol (HDL-chol), respiratory difficulties as well as psychological 54 

problems [3]. The etiology of obesity is multifactorial, and includes a complex interaction of 55 

environmental, behavioral and genetic factors [4], all of which, may also influence food 56 

preferences and favor the development of obesity.  57 

Fat is the most energy-dense macronutrient and contributes significantly to the taste and aroma 58 

of food. High-fat and high energy-dense foods are highly preferred by the population [5]. 59 

Furthermore, the western diet, which is characterized by a high consumption of processed 60 

foods rich in sugars and saturated fats, has been linked to the alarming rise in the prevalence of 61 

obesity [6]. There is evidence showing that people with a high body mass index (BMI) prefer 62 

foods high in fat and sugar content and have a lower oral detection threshold for fatty acids 63 

than individuals with normal BMI [7–10].  64 

Recently, both the CD36 glycoprotein and the G protein-coupled receptor GPR120 have 65 

emerged as candidate receptors involved in the gustatory detection of lipids. CD36 participates 66 
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in several physiological process such as inflammation, innate immune responses, 67 

atherosclerosis, angiogenesis, lipid metabolism among others [11], but has been implicated in 68 

the orosensory detection of fat foods as it exhibits a strong affinity to long-chain fatty acids [12] 69 

and is expressed in circumvallate taste buds and to a lesser extent in fungiform taste buds [13]. 70 

In addition, a single nucleotide polymorphism (SNP) in CD36 gene (rs1761667) at position -71 

31118 G>A is suggested to modulate the oral perception threshold to fatty acids. In particular, 72 

the G allele was related to lower oral detection thresholds to some fatty acids [9], whereas the 73 

A allele was associated with lower CD36 expression and decreased lipid taste perception in 74 

people with obesity [14,15]. It has been hypothesized that the low perception of oral lipids may 75 

lead to high consumption and preference for rich fat foods [16,17], and in turn, oral fatty acid 76 

hypersensitivity is associated with lower energy and fat intakes and lower body weight [18,19].  77 

The AA genotype of rs1761667 in CD36 was significantly associated with lower BMI as compared 78 

to carriers of AG and GG genotypes in adult population from Finland [20], while some other 79 

studies have identified an association of this polymorphism with obesity [13,17,21–23]. In 80 

Mexican population, rs1761667 in CD36 was studied in relationship to cardiovascular and liver 81 

diseases in adult population [24,25], however, there is no data on its relationship with 82 

childhood obesity and fat preferences.  83 

In recent years, the food industry has broadened the options regarding cooking oils, offering 84 

some extracted from fruits and seeds such as avocado and coconut [26]. Both olive and avocado 85 

oil are rich in unsaturated fatty acids such as linoleic and linolenic acid, which have been 86 

associated with reduced risk of cardiovascular disease and cancer [27]. Also, Mexico is among 87 

the top ten producers of coconut and the production and commercialization of coconut-oil has 88 
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increased in the last five years [28]. This oil is rich in lauric acid (saturated fatty acid, SFA) and 89 

medium-chain fatty acids (MCFAs) and it has been suggested for the treatment of obesity 90 

because these lipids oxidize easily and are not normally stored in adipose tissue, thus decreasing 91 

the basal metabolic rate [29]. However, the use of coconut oil in the diet remains controversial 92 

due to the possible detrimental effects of SFA and its association with dyslipidemias and 93 

cardiovascular diseases [30].  94 

Therefore, we performed this study with the aim of evaluate the association of rs1761667 in 95 

CD36 gene with body composition, fat preferences and the satisfaction scores to sauces 96 

prepared with three oils of different fatty acids composition (avocado, olive, and coconut oil) in 97 

Mexican children.  98 

Materials and methods 99 

Study design  100 

This was a cross-sectional study. Participants attended a session at Instituto de Investigaciones 101 

en Comportamiento Alimentario y Nutrición (IICAN), Universidad de Guadalajara. This session 102 

included blood sample collection for DNA extraction, anthropometric evaluation, record of 103 

socio-demographic data and application of sensory tests to assess children’s preference to oil-104 

based sauces and degree of satisfaction to these.  105 

Participants  106 

Participants were recruited by invitation; elementary schools were visited and the project was 107 

announced to principals, parents and children. Participants were eligible if they met the 108 

following inclusion criteria: aged 7-12 years and being Mexican mestizos from the region of 109 

Western Mexico (including the states of Jalisco and Colima) with auto-reported ancestry at least 110 
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three generations back. The exclusion criteria were food allergies to ingredients used in the 111 

sensory test, signs of flu or cough, and withdrawal of informed consent and/or informed assent. 112 

A total of sixty-three children (n = 63), including boys (n = 32) and girls (n = 41) were enrolled in 113 

the study. 114 

The parents of the participants gave their written informed consent prior to participation, 115 

whereas children signed an informed assent. The research protocol was approved by the 116 

Research Ethics Committee of the University of Guadalajara (CIEUC, Review Board registry 117 

CUCPV/CEICUC/2018/002) and was conducted according to the principles of the declaration of 118 

Helsinki.  119 

Anthropometrics 120 

All anthropometric measurements were taken without shoes and with light clothes, following 121 

the International Society for the Advancement of Kinanthropometry guidelines [31]. To avoid 122 

subjective error, all measurements were taken by the same person. Height was measured using 123 

a portable stadiometer (SmartMet, Michigan, USA). Weight and the percentage of body fat 124 

were measured by a bioelectrical impedance equipment (Tanita, Tokyo, Japan). The waist 125 

circumference was measured in the standing position, just above the iliac crest with an 126 

anthropometric tape (Hoechstmass, Sulzbach, Germany); hip circumference was measured at 127 

the widest portion of the buttocks. The waist-hip ratio was calculated as waist circumference 128 

divided by hip circumference. BMI z-score was calculated using the children’s weight and height 129 

using the BMI z-score calculation table established by the WHO for children and adolescents 130 

from 5 to 19 years old. Classification of the children was as follows: adequate nutritional status 131 

(from -2 to +1 SD); overweight (>+1.00 to +1.99 SD) and obesity (≥ 2.00 SD). 132 
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DNA collection and genotyping  133 

Peripheral blood samples were taken in 5% EDTA-anticoagulant tubes (BD Vacutainer, Franklin 134 

Lakes, NJ). The DNA extraction was performed according the manufacturer’s instructions using 135 

the QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany). The concentration and quality of 136 

extracted DNA was measured using Nanodrop spectrophotometer (ThermoFisher Scientific, 137 

Massachusetts, USA). Samples were stored at −20 °C for future use.  138 

Genotypes rs1761667 SNP in CD36 were obtained using the polymerase chain reaction-139 

restriction fragment length polymorphism (PCR-RFLP) using primers with the following 140 

sequence: forward 5’− CAA AAT CAC AAT CTA TTC AAG ACC A − 3’ and reverse 5’− TTT TGG GAG 141 

AAA TTC TGA AGA G − 3’ (Integrated DNA Technologies, Iowa, USA). The PCR-mixture was 142 

composed of 1X buffer, MgCl2 (2.5 mM), dNTP’s (0.1 mM), primers (0.06 μM, each one), Taq 143 

polymerase (1 U) and distilled water to reach a total volume of 25 μl with ~50 ng genomic DNA. 144 

The PCR reaction was performed in a thermocycler (Swift MiniPro-Esco, Missouri, USA) under 145 

the following conditions: initial denaturation at 95 °C for 5 min, followed by 35 cycles of 146 

amplification including denaturation at 95 °C, annealing at 95 °C, and extension at 72 °C (each 147 

comprising 30 s), and the final extension at 72 °C for 5 min.  148 

PCR products (3µl) were digested with 5 U of HhaI restriction endonuclease (Promega, 149 

Wisconsin, USA) at 37 °C for 4 h and fragments were separated by polyacrylamide gel 150 

electrophoresis (6% polyacrylamide) and subsequently stained with silver nitrate. Afterwards, 151 

the A allele was visualized as a single band (190 bp) and the G allele as two bands (138 and 152 

52 bp). 153 

Food preference test  154 
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Since oils are unfrequently consumed alone, but rather ingested as dressings or sauces 155 

accompanying other foods, the oil preference test was applied using each oil (avocado, olive 156 

and coconut, respectively) as a base for the preparation of three different sauces; these were 157 

prepared with equal amounts of salt, vinegar, garlic, spices and herbs like basil. Each oil-based 158 

sauce was served on top of a toasted bread, on a plate marked with a random number to 159 

identify each food item. Children were blind to the order that foods were presented (olive, 160 

avocado and coconut oil-based sauce); they were requested to taste each food item (without 161 

eating everything) and between each sample, participants were asked to drink water to cleanse 162 

the palate. Finally, they were requested to choose which sauce they preferred by marking with 163 

an X the corresponding space in a food preference test format. 164 

Food satisfaction degree test 165 

In this test, participants were asked to rate the oil-based sauces using a hedonic five-point scale 166 

with the following categories: "I like it very much" with a value of 2, "I like it" with a value of 1, 167 

"I don't like it but don’t disgust me" with value of 0, "I dislike" with a value of -1 and "I really 168 

dislike" with a value of -2. Both, the food preference and food satisfaction degree tests were 169 

carried out in the morning (from 8:00 am to 9:30 am) with overnight fasting of 8-12 h. 170 

Statistical analyses 171 

The distributions of all continuous variables were examined using the Shapiro–Wilk normality 172 

test. For the descriptive analysis, continuous variables normally distributed were expressed as 173 

mean ± standard deviation (s.d.) and those non-normally distributed were expressed as median 174 

and 25–75th centiles. Categorical variables were described with absolute and relative 175 

(percentage) frequencies. Student's t-test or Mann–Whitney U-test were used to evaluate 176 



 9 

differences on continuous variables between two groups, according to data normality. For the 177 

genetic analyses, Hardy-Weinberg equilibrium was tested using a χ2 test, and the strength of 178 

association of CD36 polymorphism with children obesity was assessed by Odds ratios (ORs) with 179 

95% confidence intervals (CIs). Analyses were carried out using Stata 12.0 (StataCorp LLC, Texas, 180 

USA) and GraphPad Prism 6.0 (GraphPad Software, California, USA). Statistical significance was 181 

set as a p value ≤ 0.05.  182 

Results  183 

Sociodemographic and body composition characteristics of the participants 184 

Children were classified according to their BMI z-score as follows: normal-weight group (NW, n= 185 

30) and group with overweight or obesity (OW/OB, n = 33). The sociodemographic, 186 

anthropometric and clinical characteristics of study participants are presented in Table 1. As 187 

expected, the OW/OB group had significantly higher measures for height, weight, BMI z-score 188 

and body fat percent (p = 0.0071, p < 0.0001, p < 0.0001, p < 0.0001). However, with regard to 189 

other sociodemographic factors, no significant differences were found between the two study 190 

groups. 191 

Relationship between -31118 G>A polymorphism in CD36 and children’s BMI z-score  192 

Genotypic frequencies were in Hardy-Weinberg Equilibrium (p = 0.58) in the normal weight 193 

group. Genotype and allele frequency distributions of rs1761667 among the study groups are 194 

shown in Table 2. The AA genotype of CD36 was the most frequent in the NW group, whereas in 195 

the OW/OB group the most frequent genotype was GA, however, no significant differences 196 

were observed when comparing the frequency of CD36 genotypes according to participant’s 197 

BMI z-score (p = 0.07). The G allele was almost two-fold more frequent in the OW/OB group as 198 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560776/table/Tab2/
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compared to the NW group (37.87% vs. 20.00%) and it was significantly associated with an 199 

increased risk of having overweight or obesity (OR = 2.43 (CI 1.02-5.99); p = 0.02).  200 

Relationship between the preference to oil-based sauces and the BMI z-score  201 

To test the association between the BMI z-score and the preference to different oils, children 202 

were asked to taste three sauces prepared with oils of different origin and fatty acids 203 

composition (olive, coconut and avocado oil) and select the preferred oil-based sauce. The 204 

results of food preference test showed that 50% of children in the NW group preferred the 205 

avocado oil sauce, while in the OW/OB group the most preferred was the coconut oil sauce with 206 

a 42.42% preference, however, there was no significant association between the preference to 207 

oil-based sauces and the participant’s BMI z-score (Table 3). 208 

Relationship between the preference to oil-based sauces and CD36 -31118 G>A polymorphism  209 

Avocado oil sauce was the most preferred within carriers of the AA and GA genotypes; whereas 210 

carriers of the GG genotype showed a tendency of preference towards coconut oil sauce, 211 

although no significant differences were found (Table 3).  212 

Relationship between food satisfaction degree test to oil-based sauces and the BMI z-score  213 

Scores given to each oil-based sauce according to the children’s BMI z-score were analyzed. The 214 

NW tended to score higher the avocado oil sauce (mean score 0.73 ± 1.36) than the OW/OB 215 

group (mean score 0.18 ± 1.23, p = 0.09). No significant differences were neither observed in 216 

satisfaction scores assigned to the olive and coconut oil-based sauces when analyzing by BMI z-217 

score.  218 

Since avocado and olive oil share composition characteristics (a greater amount of 219 

polyunsaturated fatty acids (PUFAs) than the coconut oil), we decided to group their scores for 220 
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further analysis. It was observed that the average satisfaction score awarded to the PUFA-rich 221 

oils by the NW group was significantly higher than the score assigned by the OW/OB group (0.57 222 

± 1.26, vs. 0.06 ± 1.22; p = 0.02) (Figure 1). 223 

Relationship between the satisfaction degree test to oil-based sauces and CD36 -31118 G>A 224 

polymorphism  225 

Children were grouped according to the genotypes in CD36 (AA, GA or GG) independently of 226 

their BMI z-score to asses if this genetic variant in a gustatory lipid receptor could also have an 227 

effect on the satisfaction scores assigned to the oil-based sauces, however, no significant 228 

relationship was found. Furthermore, since it was found that this polymorphism in CD36 follows 229 

a dominant inheritance model in this population (data not shown), meaning that carrying a 230 

single copy of G allele is sufficient to modify the risk and that being a carrier of 2 copies modifies 231 

it to the same extent; we decided to compare the scores obtained in the degree of satisfaction 232 

test by grouping carriers of AA genotype versus carriers of GA + GG genotypes. Again, no 233 

significant relationship was found between the alleles in this CD36 SNP and the satisfaction 234 

score assigned to the oil-based sauces (data not shown). 235 

Discussion  236 

CD36 is recognized as a gustatory lipid receptor and emerging evidence suggests that genetic 237 

variants in CD36 can modulate lipid detection thresholds and preferences [14,16]. This study 238 

was conducted with the aim of evaluating the relationship of polymorphism rs1761667 in CD36 239 

gene with body composition, fat preferences and the satisfaction score to sauces prepared with 240 

three types of oils (avocado, olive, and coconut) in Mexican children. No association was found 241 

between preferences for oil-based sauces and BMI z-score, nor between these preferences with 242 
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CD36 genotypes, however in the satisfaction degree test, it was observed that the oil-based 243 

sauces with more PUFAs content (avocado and olive oil) received higher scores in the NW group 244 

than the OW/OB group. Furthermore, we found that the G allele of CD36 gene polymorphism -245 

31118 G>A, was associated with the risk of overweight or obesity in children from western 246 

Mexico.  247 

Regarding the genetic analysis, the A-allele was the most frequent in our participants, in a 248 

similar way to what has been reported in European and American populations, whereas in other 249 

populations (African, east and south Asian) this allele is the less frequent [21]. It is worth 250 

mentioning that in western Mexico there is the Nahua ethnic group, which is part of the 251 

Amerindian population, but in addition to Amerindian genes, the Mexican genetic pool consists 252 

of a heterogeneous mixture of European, Asian and African genes [32,33]. In this study, children 253 

carrying the G allele of rs1761667 in CD36 had increased risk of being overweight or obese in 254 

comparison to carriers with the A allele. Our results coincide with those obtained by Solakivi et 255 

al. in adult population from Finland; they reported that participants with the GA and GG 256 

genotypes have higher BMI than participants with the AA genotype [20]. Similarly, Melis et al. 257 

conducted a study with adult Caucasian population, and reported that the G allele was 258 

associated to increased waist/hip ratio in obese subjects, although participants with this allele 259 

showed decreased BMI when compared to participants with the AA genotype [22]. In contrast 260 

to these findings, Sayed et al. reported that the A allele is frequent in obese African children and 261 

that carrying this allele provides increased risk for obesity in children [17]. Daoudi et al. also 262 

found, in an Arab-Berber adolescents’ population, higher frequencies of AA and AG genotypes in 263 

obese subjects compared to controls [13]. These conflicting results, are likely explained by 264 
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differences in the genetic characteristics of the studied populations, a phenomenon also known 265 

as ethnogenetic heterogeneity, which refers to the genetic variations for some ethnic groups 266 

that together with other genetic and environmental factors, modify the risk for certain diseases 267 

[34,35,36].  268 

The children’s preferences for oil-based sauces showed no relationship with the CD36 269 

genotypes or the BMI z-score. This agrees with some authors that reported no association 270 

between high-fat foods preference with the BMI and CD36 genotype in Afro-American and 271 

Caucasian adult population [9,21,37]. Keller et al. showed that participants carrying the AA 272 

genotype had very low thresholds of oral perception for fatty acids and suggested that a 273 

decrease in the expression of CD36 could lead to lower sensitivity to fatty acids [21], however, 274 

molecular confirmatory evidence to show whether the expression of CD36 is decreased in taste 275 

receptor cells of carriers of AA genotype is still needed. Another factor that possibly contributes 276 

to discrepancies of our data with other studies is the density of taste buds in the tongue. 277 

Children have a lower density of papillae compared to adults [38]. In addition, these papillae are 278 

less developed in children; the fungiform papillae reach their full size from 8 to 10 years of age, 279 

while the circumvallate papillae continue to grow until the age of 15-16 years, and these taste 280 

buds express CD36 receptor mRNA up to 9 times more than fungiform papillae [13]. Therefore, 281 

it is possible that the children participating in our study had such low CD36 expression that the 282 

differences expected according to the CD36 genotype may have been obscured and therefore 283 

no differences in the preference for oil-based sauces with different lipid profile were detected. 284 

It is also important to consider that food preferences and the acceptance to food, develops 285 

early in childhood and depends on many environmental factors and multiple learning 286 
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mechanisms, for example, the Pavlovian conditioning and the repeated exposure to foods, 287 

which are well-known learning processes involved in the formation of food preferences [39, 40].  288 

Results of the children’s satisfaction score test to oil-based sauces showed that there was no 289 

statistically significant difference according to CD36 genotypes, however, when analyzing by 290 

BMI z-score, the children of the NW group tended to assign higher satisfaction scores to PUFAs-291 

rich sauces in comparison to children of the OW/OB group. This result suggests that nutritional 292 

status, in particular obesity and overweight may affect the hedonic response to fat foods. 293 

Although previous studies have suggested that obesity modifies the oral transduction capacity 294 

and sensitivity to medium chain fatty acids, there is still no mechanistic data to explain why 295 

obese people have different sensitivity or responsiveness to fatty taste than lean people [41]. 296 

One biological factor to take into account is the hormonal modulation of taste, which can 297 

influence daily caloric intake and possibly the food preferences and satisfaction scores [42]. For 298 

example, the metabolic hormone leptin has been shown to increase CD36 expression in cell 299 

cultures of human placenta [43] and the leptin receptor (Lep-R) is expressed in type II taste 300 

receptor cells [44]. Ghrelin and its receptor are also expressed in all types of taste cells [45] and  301 

it has been suggested that its signaling may affect the perception of taste and the processing of 302 

food-rewards and food-conditioned preferences [46]. Therefore, the interaction between these 303 

hormone receptors may influence the taste transduction of fatty acids and the hedonic 304 

responses (assessed by the satisfaction score test) to foods with different fatty acid 305 

composition.  306 

This is the first study providing information on the role of CD36 SNP -31118 G>A on body 307 

composition in children from western Mexico, as well as information on the preference and 308 
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satisfaction scores assigned to oils extracted from fruits highly produced in Mexico, such as 309 

coconut and avocado oil. We consider that the application of sensory tests for evaluating the 310 

preference and satisfaction score to foods of different fatty acid composition is more objective 311 

than the application of questionnaires for self-reporting food preferences. However, the present 312 

study had several limitations; the sample size is limited for a genetic association study and 313 

larger confirmation studies in this population will be necessary. Also, it is worth mentioning that 314 

there were differences in regards of the sensory attributes of the foods used in our preference 315 

test; for example, olive oil sauce had a bitter taste whereas the coconut oil was notably sweeter. 316 

It has been argued that the preference for sweet taste is innate in humans, and there is 317 

evidence that people with obesity have a lower detection threshold of sweet taste [8]. In this 318 

research, the coconut oil-based sauce was preferred by a higher percentage of children with 319 

overweight/obesity; which coincides with the report that people with high BMI prefer fatty 320 

foods rich in medium and saturated fatty acids [47].  321 

In conclusion, the G allele of -31118 G>A polymorphism in CD36 was associated to an increased 322 

risk of childhood overweight and obesity, but this SNP do not appear to modulate the 323 

preferences and satisfaction scores to fat in Mexican children. Although it has been reported 324 

that some SNPs can modulate and/or influence the sensory variations in responses to food, 325 

these genetic factors are not determining, since this complex process is mediated by the 326 

interaction of multiple biological, environmental and psychological factors. 327 
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 464 

Nominal variables are expressed in percentages and frequencies. p: Chi-square test. Continuous 465 

variables with normal distribution are expressed as mean ± SD. p: Student's T-test. Continuous 466 

variables with non-normal distribution are expressed as median (p25-p75). p: Mann-Whitney 467 

Test. aGroups were classified according to the WHO BMI z-score. 468 

Abbreviations: NW, normal weight; OW/OB, overweight and obesity; T2D, Type 2 diabetes.  469 

Table 1. Sociodemographic, anthropometric and clinical data of the participants. 

Variable  NW 
(n=30) 

OW/OBa 

 (n=33) 
p 

Gender    
Male, % (n) 14.2 (19) 20.6 (13) 0.4 
Female, % (n) 33.3 (21) 31.7 (20) 
Age, years 9.4 ± 1.1 9.8 ± 1.3 0.21 
Height, cm 137.4 ± 10.1 144.1 ± 11.5 0.0071 
Weight, kg  31.0 (26.5- 36.8) 52.6 (45.6- 57.5) < 0.0001 
BMIc 16.8 (15.3-18) 23.5 (21.8- 26.6) < 0.0001 
Waist-hip ratio, cm  0.86 ± 0.04 0.89 ± 0.05 0.02 
Body fat, % 21.9 (18-25) 35.0 (30.7- 39.2) < 0.0001 
Fat free mass, % 78.1 (75-82) 65.3 (61.5- 71.75) < 0.0001 
Family disease history  
Hypertension, % (n) 37.5 (21) 37.5 (21) 0.5 
T2D, % (n) 46.4 (26) 41 (23) 0.1 
Heart attack, % (n) 23.2 (13) 19.6 (11) 0.4 
Cardiovascular, % (n)  
Diseases, % (n) 

23.2 (13) 21.4 (12) 0.5 

Smoking, % (n)  8.9 (5) 12.5 (7) 0.6 
Clinical history  
Infections, % (n) 6.6 (2) 15.15 (5) 0.2 
Surgeries, % (n) 10 (3) 3.33 (1) 0.2 
Allergies, % (n) 16.6 (5) 21.21 (7) 0.6 
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 474 

Table 2. Genotypic and allelic frequencies according to children’s BMI z-score 

Genotype NW 
 (n=30) 

OW/OB  
(n=33) 

 p  OR (95% CI); p 

 % (n) % (n)   

AAa 63.33 (19) 
 

36.36 (12)  1 

GA 33.33 (10) 
 

51.51 (17) 0.09b 2.1 (0.68-6.71); 0.14 

GG 1.58 (1) 
 

12.12 (4)  4 (0.35-203.62); 0.20 

Allele     
Aa 80 (48) 

 
62.12 (41) 0.02c 1 

G 20 (12) 
 

37.87 (25)  2.43 (1.02-5.99); 0.02 

aReference category. bFisher's exact test. cChi-square test.   475 

Abbreviations: NW, normal weight; OW/OB, overweight and obesity; OR, odds ratio; 95% CI, 476 

95% confidence interval. 477 

 478 
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 480 

 481 

 482 
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 24 

 485 

 486 

 487 

 488 

 489 

aChi squared test. bFisher’s exact test.  490 

Abbreviations: NW, normal weight; OW/OB, overweight and obesity. 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

Table 3. Oil-based sauces preference according to children’s BMI z-score and CD36 genotype 

 NW 
 (n=30) 

OW/OB 
(n=33) 

 
pa 

AA  
genotype 

(n=31) 

GA 
genotype 

(n=27) 

GG 
genotype 

(n=5) 

 
p b 

 % (n) % (n)  % (n) % (n) % (n)  

Avocado 
oil-based 
sauce  

50 (15) 39.39 (13)  
 

 
 

0.26  

51.61 (16) 40.74 (11) 
 

20 (1)  
 
 
 

0.62  
Olive oil-
based 
sauce 

26.66 (8) 
 

18.18 (6) 19.35 (6) 25.92 (7) 
 

20 (1) 

Coconut 
oil-based 
sauce  

23.23 (7) 
 

42.42 (14) 29.03 (9) 33.33 (9) 
 

60 (3) 



 25 

 500 

 501 

 502 

 503 

 504 

Figure legends 505 

Figure 1. Satisfaction scores assigned by children to the oil-based sauces. Scores were obtained 506 

by the degree of satisfaction test. Mean and standard error of the mean (SEM, bars) are shown. 507 

p: Student's T-test. Abbreviations: NW, normal weight group; OW/OB overweight and obesity 508 

group. 509 




