Assimilation of Sentinel-2 Biophysical Variables into a Digital Twin for the Automated Irrigation Scheduling of a Vineyard
Ver/Abrir
Autor/a
Fecha de publicación
2023-07-08ISSN
2073-4441
Resumen
Decision support systems (DSS) are needed to carry out precision irrigation. Key issues in this regard include how to deal with spatial variability and the adoption of deficit irrigation strategies at the field scale. A software application originally designed for water balance-based automated irrigation scheduling locally fine-tuned through the use of sensors has been further developed with the emerging paradigm of both digital twins and the Internet of Things (IoT). The aim of this research is to demonstrate the feasibility of automatically scheduling the irrigation of a commercial vineyard when adopting regulated deficit irrigation (RDI) strategies and assimilating in near real time the fraction of absorbed photosynthetically active radiation (fAPAR) obtained from Sentinel-2 imagery. In addition, simulations of crop evapotranspiration obtained by the digital twin were compared with remote sensing estimates using surface energy balance models and Copernicus-based inputs. Results showed that regression between instantaneous fAPAR and in situ measurements of the fraction of intercepted photosynthetically active radiation (fIPAR) had a coefficient of determination (R2) ranging from 0.61 to 0.91, and a root mean square deviation (RMSD) of 0.10. The conversion of fAPAR to a daily time step was dependent on row orientation. A site-specific automated irrigation scheduling was successfully adopted and an adaptive response allowed spontaneous adjustments in order to stress vines to a certain level at specific growing stages. Simulations of the soil water balance components performed well. The regression between digital twin simulations and remote sensing-estimated actual (two-source energy balance Priestley–Taylor modeling approach, TSEB-PTS2+S3) and potential (Penman–Monteith approach) evapotranspiration showed RMSD values of 0.98 mm/day and 1.14 mm/day, respectively.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Materias (CDU)
634 - Horticultura. Viticultura
Páginas
23
Publicado por
MDPI
Publicado en
Water
Citación recomendada
Bellvert, Joaquim, Ana Pelechá, Magí Pamies-Sans, Jordi Virgili, Mireia Torres, and Jaume Casadesús. 2023. "Assimilation Of Sentinel-2 Biophysical Variables Into A Digital Twin For The Automated Irrigation Scheduling Of A Vineyard". Water 15 (14): 2506. doi:10.3390/w15142506.
Número del acuerdo de la subvención
EC/H2020/823965/EU/Accounting for Climate Change in Water and Agriculture management/ACCWA
MICIU/Programa Estatal de I+D+I orientada a los retos de la Sociedad/RTI2018-099949-R-C21/ES/GESTION Y CONTROL AUTOMATIZADO DEL RIEGO A PARTIR DE LA INTEGRACION DE MULTIPLES FUENTES DE DATOS EN CULTIVOS HORTOFRUTICOLAS/IRRINTEGRAL
MC/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/TED2021-131237B-C21/ES/Evaluation of the digital twin paradigm applied to precision irrigation/DigiSPAC
Program
Ús Eficient de l'Aigua en Agricultura
Este ítem aparece en la(s) siguiente(s) colección(ones)
- ARTICLES CIENTÍFICS [3467]
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/


