Show simple item record

dc.contributor.authorChauvigné, François
dc.contributor.authorDucat, Carla
dc.contributor.authorFerré, Alba
dc.contributor.authorHansen, Tom
dc.contributor.authorCarrascal, Montserrat
dc.contributor.authorAbián, Joaquín
dc.contributor.authorFinn, Roderick Nigel
dc.contributor.authorCerdà, Joan
dc.contributor.otherProducció Animalca
dc.date.accessioned2021-04-19T10:26:44Z
dc.date.issued2021-03-09
dc.identifier.citationChauvigné, François, Carla Ducat, Alba Ferré, Tom Hansen, Montserrat Carrascal, Joaquín Abián, Roderick Nigel Finn, and Joan Cerdà. 2021. "A Multiplier Peroxiporin Signal Transduction Pathway Powers Piscine Spermatozoa". Proceedings Of The National Academy Of Sciences 118 (10): e2019346118. doi:10.1073/pnas.2019346118.ca
dc.identifier.issn0027-8424ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/1249
dc.description.abstractThe primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.ca
dc.format.extent48ca
dc.language.isoengca
dc.publisherNational Academy of Sciencesca
dc.relation.ispartofProceedings of the National Academy of Sciences (PNAS)ca
dc.titleA multiplier peroxiporin signal transduction pathway powers piscine spermatozoaca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/embargoedAccess
dc.date.embargoEnd2021-09-05T01:00:00Z
dc.embargo.terms6 mesosca
dc.relation.projectIDMINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2016-76802-R/ES/Canales de agua e ionicos como nuevos marcadores de estrés oxidativo y cinemáticos de la calidad del esperma en teleosteos marinos/SPERMIOPORINca
dc.relation.projectIDMINECO/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC-2015-17103/ES/ /ca
dc.subject.udc639ca
dc.identifier.doihttps://doi.org/10.1073/pnas.2019346118ca
dc.contributor.groupAqüiculturaca


Files in this item

This document contains embargoed files until 2021-09-05T

This item appears in the following Collection(s)

Show simple item record