Show simple item record

dc.contributor.authorCastro Arnau, Júlia
dc.contributor.authorChauvigné, François
dc.contributor.authorCerdà, Joan
dc.contributor.otherProducció Animalca
dc.date.accessioned2022-11-02T13:11:44Z
dc.date.available2022-11-02T13:11:44Z
dc.date.issued2022-10-11
dc.identifier.citationCastro-Arnau, Júlia, François Chauvigné, and Joan Cerdà. 2022. "Role Of Ion Channels In The Maintenance Of Sperm Motility And Swimming Behavior In A Marine Teleost". International Journal Of Molecular Sciences 23 (20): 12113. doi:10.3390/ijms232012113.ca
dc.identifier.issn1661-6596ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/1957
dc.description.abstractIn oviparous marine fishes, the hyperosmotic induction of sperm motility in seawater (SW) is well established, however, the potential function of ion channels in the maintenance of post activated spermatozoon swimming performance remains largely unknown. Here, we investigated the influence of ion channels on the spermatozoon swimming parameters using the gilthead seabream (Sparus aurata) as a model for modern marine teleosts. Our data show that the SW-induced activation of seabream sperm motility requires three concomitant processes, the hyperosmotic shock, an ion-flux independent increase of the intracellular concentration of Ca2+ ([Ca2+]i), but not of [K+]i or [Na+]i, and the alkalization of the cytosol. The combination of all three processes is obligatory to trigger flagellar beating. However, the time-course monitoring of sperm motion kinetics and changes in the [Ca2+]i, [K+]i and [Na+]i in SW or in non-ionic activation media, showed that the post activated maintenance of spermatozoa motility is dependent on extracellular Ca2+ and K+. A meta-analysis of a seabream sperm transcriptome uncovered the expression of multiple ion channels, some of which were immunolocalized in the head and/or tail of the spermatozoon. Selective pharmacological inhibition of these ion channel families impaired the long-term motility, progressivity, and velocity of SW-activated spermatozoa. The data further revealed that some antagonists of K+-selective or Ca2+-selective channels, as well as of stretch-activated and mechanosensitive channels, altered the trajectory of spermatozoa, suggesting that these ion channels are likely involved in the control of the swimming pattern of the post activated spermatozoon. These combined findings provide new insight into the signaling pathways regulating spermatozoon activation and swimming performance in marine fishes.ca
dc.format.extent25ca
dc.language.isoengca
dc.publisherMDPIca
dc.relation.ispartofInternational Journal of Molecular Sciencesca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleRole of Ion Channels in the Maintenance of Sperm Motility and Swimming Behavior in a Marine Teleostca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2016-76802-R/ES/Canales de agua e ionicos como nuevos marcadores de estrés oxidativo y cinemáticos de la calidad del esperma en teleosteos marinos/SPERMIOPORINca
dc.subject.udc637ca
dc.identifier.doihttps://doi.org/10.3390/ijms232012113ca
dc.contributor.groupAqüiculturaca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint