Show simple item record

dc.contributor.authorGonthier, Jérémy
dc.contributor.authorArnó, Judit
dc.contributor.authorRomeis, Jörg
dc.contributor.authorCollatz, Jana
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-02-15T14:56:55Z
dc.date.available2023-02-15T14:56:55Z
dc.date.issued2022-12-08
dc.identifier.citationGonthier, J., Arnó, J., Romeis, J. and Collatz, J. (2022), Few indirect effects of baculovirus on parasitoids demonstrate high compatibility of biocontrol methods against Tuta absoluta. Pest Manag Sci. Accepted Author Manuscript. https://doi.org/10.1002/ps.7314ca
dc.identifier.issn1526-498Xca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2094
dc.description.abstractBACKGROUND Combining different biocontrol agents, particularly micro- and macroorganisms, can contribute to new and sustainable pest control approaches. Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most destructive pests of solanaceous crops. An emerging management strategy consists of biological control using microbial insecticides such as baculoviruses, but with limited efficacy. Thanks to their high target specificity, baculoviruses can be used simultaneously with natural enemies such as parasitoids for improved control of T. absoluta. However, potential indirect nontarget effects of baculoviruses on parasitoids can result from overlapping resource requirements. We assessed whether ovipositing parasitoid females discriminated against virus-treated hosts and examined the outcome of within-host competition between the hymenopteran parasitoids Necremnus tutae (Reuter) (Eulophidae) and Dolichogenidea gelechiidivoris Marsch (Braconidae), and the Phthorimaea operculella granulovirus (PhopGV, Baculoviridae) that infects T. absoluta larvae. RESULTS Female D. gelechiidivoris discriminated against virus-treated hosts, whereas N. tutae did not. We found few indirect virus-related effects depending on the species, the sex, and the time of virus treatment. Effects were ambivalent for D. gelechiidivoris offspring and ranged from increased male longevity when infection occurred before parasitization to reduced emergence and male longevity when infection occurred after parasitization. N. tutae offspring showed a longer development time and shorter male longevity when they developed in virus-treated hosts. CONCLUSION The virus had a low impact on parasitoid offspring. In rare cases, adverse effects were detected; however, the low magnitude of these effects is unlikely to reduce the fitness of parasitoid offspring, therefore both parasitoids seem compatible with the baculovirus for control of T. absoluta.ca
dc.format.extent11ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofPest Management Scienceca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleFew indirect effects of baculovirus on parasitoids demonstrate high compatibility of biocontrol methods against Tuta absolutaca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc632ca
dc.identifier.doihttps://doi.org/10.1002/ps.7314ca
dc.contributor.groupProtecció Vegetal Sostenibleca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint