Mostrar el registro sencillo del ítem

dc.contributor.authorCalle-García, Joan
dc.contributor.authorRamayo-Caldas, Yuliaxis
dc.contributor.authorZingaretti, Laura M.
dc.contributor.authorQuintanilla, Raquel
dc.contributor.authorBallester Devis, Maria
dc.contributor.authorPérez-Enciso, Miguel
dc.contributor.otherProducció Animalca
dc.date.accessioned2023-05-31T13:40:48Z
dc.date.available2023-05-31T13:40:48Z
dc.date.issued2023-05-01
dc.identifier.citationCalle-García, Joan, Yuliaxis Ramayo-Caldas, Laura M. Zingaretti, Raquel Quintanilla, María Ballester, and Miguel Pérez-Enciso. 2023. "On The Holobiont ‘Predictome’ Of Immunocompetence In Pigs". Genetics Selection Evolution 55 (1). doi:10.1186/s12711-023-00803-4.ca
dc.identifier.issn0999-193Xca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2230
dc.description.abstractBackground Gut microbial composition plays an important role in numerous traits, including immune response. Integration of host genomic information with microbiome data is a natural step in the prediction of complex traits, although methods to optimize this are still largely unexplored. In this paper, we assess the impact of different modelling strategies on the predictive capacity for six porcine immunocompetence traits when both genotype and microbiota data are available. Methods We used phenotypic data on six immunity traits and the relative abundance of gut bacterial communities on 400 Duroc pigs that were genotyped for 70 k SNPs. We compared the predictive accuracy, defined as the correlation between predicted and observed phenotypes, of a wide catalogue of models: reproducing kernel Hilbert space (RKHS), Bayes C, and an ensemble method, using a range of priors and microbial clustering strategies. Combined (holobiont) models that include both genotype and microbiome data were compared with partial models that use one source of variation only. Results Overall, holobiont models performed better than partial models. Host genotype was especially relevant for predicting adaptive immunity traits (i.e., concentration of immunoglobulins M and G), whereas microbial composition was important for predicting innate immunity traits (i.e., concentration of haptoglobin and C-reactive protein and lymphocyte phagocytic capacity). None of the models was uniformly best across all traits. We observed a greater variability in predictive accuracies across models when microbiability (the variance explained by the microbiome) was high. Clustering microbial abundances did not necessarily increase predictive accuracy. Conclusions Gut microbiota information is useful for predicting immunocompetence traits, especially those related to innate immunity. Modelling microbiome abundances deserves special attention when microbiability is high. Clustering microbial data for prediction is not recommended by default.ca
dc.format.extent12ca
dc.language.isoengca
dc.publisherBMCca
dc.relation.ispartofGenetics Selection Evolutionca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleOn the holobiont ‘predictome’ of immunocompetence in pigsca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2019-108829RB-I00/ES/La belleza de lo profundo: Aplicaciones del deep learning a la predicción genómica/ca
dc.relation.projectIDMINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2016-75432-R/ES/DETERMINACION GENETICA DE LA CAPACIDAD INMUNOLOGICA EN PORCINO: IDENTIFICACION DE VARIANTES GENETICAS FUNCIONALES PARA LA IMPLEMENTACION DE SELECCION GENOMICA/ca
dc.relation.projectIDMICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-112677RB-C21/ES/FISIOLOGIA MOLECULAR DEL INMUNOMETABOLISMO EN PORCINO: BASES PARA LA SELECCION DE POBLACIONES MAS ROBUSTAS/ca
dc.relation.projectIDMINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2017-88849-R/ES/MICROBIOTA INTESTINAL Y GENETICA DEL HUESPED: CONTRIBUCION CONJUNTA A LA EFICIENCIA, EL COMPORTAMIENTO Y LA ROBUSTEZ EN PORCINO/ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2019-000902-S/ES/ /ca
dc.relation.projectIDMICIU-FEDER/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC2019-027244-I/ES/Metagenomics and integrative biology tools to improve sustainable livestock systems/ca
dc.subject.udc575ca
dc.identifier.doihttps://doi.org/10.1186/s12711-023-00803-4ca
dc.contributor.groupGenètica i Millora Animalca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir