Mostra el registre parcial de l'element

dc.contributor.authorGracia-Romero, Adrian
dc.contributor.authorRufo, Rubén
dc.contributor.authorGomez-Candon, David
dc.contributor.authorSoriano Soriano, Jose Miguel
dc.contributor.authorBellvert, Joaquim
dc.contributor.authorYannam, Venkata Rami Reddy
dc.contributor.authorGulino, Davide
dc.contributor.authorLopes, Marta S.
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-08-07T12:15:48Z
dc.date.available2023-08-07T12:15:48Z
dc.date.issued2023-04-03
dc.identifier.citationGracia-Romero, Adrian, Rubén Rufo, David Gómez-Candón, José Miguel Soriano, Joaquim Bellvert, Venkata Rami Reddy Yannam, Davide Gulino, and Marta S. Lopes. 2023. "Improving In-Season Wheat Yield Prediction Using Remote Sensing And Additional Agronomic Traits As Predictors". Frontiers In Plant Science 14. doi:10.3389/fpls.2023.1063983.ca
dc.identifier.issn1664-462Xca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2342
dc.description.abstractThe development of accurate grain yield (GY) multivariate models using normalized difference vegetation index (NDVI) assessments obtained from aerial vehicles and additional agronomic traits is a promising option to assist, or even substitute, laborious agronomic in-field evaluations for wheat variety trials. This study proposed improved GY prediction models for wheat experimental trials. Calibration models were developed using all possible combinations of aerial NDVI, plant height, phenology, and ear density from experimental trials of three crop seasons. First, models were developed using 20, 50 and 100 plots in training sets and GY predictions were only moderately improved by increasing the size of the training set. Then, the best models predicting GY were defined in terms of the lowest Bayesian information criterion (BIC) and the inclusion of days to heading, ear density or plant height together with NDVI in most cases were better (lower BIC) than NDVI alone. This was particularly evident when NDVI saturates (with yields above 8 t ha-1) with models including NDVI and days to heading providing a 50% increase in the prediction accuracy and a 10% decrease in the root mean square error. These results showed an improvement of NDVI prediction models by the addition of other agronomic traits. Moreover, NDVI and additional agronomic traits were unreliable predictors of grain yield in wheat landraces and conventional yield quantification methods must be used in this case. Saturation and underestimation of productivity may be explained by differences in other yield components that NDVI alone cannot detect (e.g. differences in grain size and number).ca
dc.description.sponsorshipThis study was funded by the projects AGL2015-65351-R, PID2019-109089RB-C31 and TED2021-131606B-C21 of the Spanish Ministry of Economy and Competitiveness. AG-R was funded by a Margarita Salas post-doctoral contract from the Spanish Ministry of Universities affiliated to the Research Vice-Rector of the University of Barcelona. VRRY was funded by a pre-doctoral contract from the Spanish Ministry of Economy and Competitiveness (PRE2020-092369). The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.en
dc.description.sponsorshipThe authors acknowledge the contribution of the CERCA Program (Generalitat de Catalunya). The authors acknowledge Andrea Lopez, Ezequiel Arqué, Jordi Companys, and Josep Millera for their technical contributions to the experimental setup of field trials.en
dc.format.extent10ca
dc.language.isoengca
dc.publisherFrontiers Mediaca
dc.relation.ispartofFrontiers in Plant Scienceca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleImproving in-season wheat yield prediction using remote sensing and additional agronomic traits as predictorsca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2015-65351-R/ES/HERRAMIENTAS PARA LA SELECCION ASISTIDA POR MARCADORES EN PROGRAMAS DE MEJORA DE TRIGO A ESCALA NACIONAL E INTERNACIONAL: ADAPTACION AL CAMBIO CLIMATICO Y CALIDAD INDUSTRIAL/ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/PID2019-109089RB-C31/ES/Mejora de la precisión y eficiencia en la selección de caracteres complejos en la mejora del trigo en ambientes mediterráneos mediante selección asistida y selección genómica/TRENDING_Wheatca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/TED2021-131606B-C21/ES/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.3389/fpls.2023.1063983ca
dc.contributor.groupCultius Extensius Sosteniblesca
dc.contributor.groupÚs Eficient de l'Aigua en Agriculturaca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Attribution 4.0 International
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix