Mostrar el registro sencillo del ítem

dc.contributor.authorGené-Mola, Jordi
dc.contributor.authorFerrer-Ferrer, Mar
dc.contributor.authorGregorio, Eduard
dc.contributor.authorBlok, Pieter M.
dc.contributor.authorHemming, Jochen
dc.contributor.authorMorros, Josep-Ramon
dc.contributor.authorRosell-Polo, Joan R.
dc.contributor.authorVilaplana, Verónica
dc.contributor.authorRuiz-Hidalgo, Javier
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-09-21T16:22:47Z
dc.date.available2023-09-21T16:22:47Z
dc.date.issued2023-04-21
dc.identifier.citationGené-Mola, Jordi, Mar Ferrer-Ferrer, Eduard Gregorio, Pieter M. Blok, Jochen Hemming, Josep-Ramon Morros, Joan R. Rosell-Polo, Verónica Vilaplana, and Javier Ruiz-Hidalgo. 2023. "Looking Behind Occlusions: A Study On Amodal Segmentation For Robust On-Tree Apple Fruit Size Estimation". Computers And Electronics In Agriculture 209: 107854. doi:10.1016/j.compag.2023.107854.ca
dc.identifier.issn0168-1699ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2363
dc.description.abstractThe detection and sizing of fruits with computer vision methods is of interest because it provides relevant information to improve the management of orchard farming. However, the presence of partially occluded fruits limits the performance of existing methods, making reliable fruit sizing a challenging task. While previous fruit segmentation works limit segmentation to the visible region of fruits (known as modal segmentation), in this work we propose an amodal segmentation algorithm to predict the complete shape, which includes its visible and occluded regions. To do so, an end-to-end convolutional neural network (CNN) for simultaneous modal and amodal instance segmentation was implemented. The predicted amodal masks were used to estimate the fruit diameters in pixels. Modal masks were used to identify the visible region and measure the distance between the apples and the camera using the depth image. Finally, the fruit diameters in millimetres (mm) were computed by applying the pinhole camera model. The method was developed with a Fuji apple dataset consisting of 3925 RGB-D images acquired at different growth stages with a total of 15,335 annotated apples, and was subsequently tested in a case study to measure the diameter of Elstar apples at different growth stages. Fruit detection results showed an F1-score of 0.86 and the fruit diameter results reported a mean absolute error (MAE) of 4.5 mm and R2 = 0.80 irrespective of fruit visibility. Besides the diameter estimation, modal and amodal masks were used to automatically determine the percentage of visibility of measured apples. This feature was used as a confidence value, improving the diameter estimation to MAE = 2.93 mm and R2 = 0.91 when limiting the size estimation to fruits detected with a visibility higher than 60%. The main advantages of the present methodology are its robustness for measuring partially occluded fruits and the capability to determine the visibility percentage. The main limitation is that depth images were generated by means of photogrammetry methods, which limits the efficiency of data acquisition. To overcome this limitation, future works should consider the use of commercial RGB-D sensors. The code and the dataset used to evaluate the method have been made publicly available at https://github.com/GRAP-UdL-AT/Amodal_Fruit_Sizingca
dc.description.sponsorshipThis work was partly funded by the Departament de Recerca i Universitats de la Generalitat de Catalunya (grant 2021 LLAV 00088), the Spanish Ministry of Science, Innovation and Universities (grants RTI2018-094222-B-I00 [PAgFRUIT project], PID2021-126648OB-I00 [PAgPROTECT project] and PID2020-117142GB-I00 [DeeLight project] by MCIN/AEI/10.13039/501100011033 and by “ERDF, a way of making Europe”, by the European Union). The work of Jordi Gené Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU. We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisition, and Pieter van Dalfsen and Dirk de Hoog from Wageningen University & Research for additional data collection used in the case study.ca
dc.format.extent13ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofComputers and Electronics in Agricultureca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleLooking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimationca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-094222-B-100/ES/Tecnologías de agricultura de precisión para optimizar el manejo de dosel foliar y la protección fitosanitaria sostenible en plantaciones de frutales/PAgFRUITca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-126648OB-100/ES/Protección de cultivos de precisión para conseguir objetivos del Pacto Verde Europeo en uso eficiente y reducción de fitosanitarios mediate Agricultura de Precisión/PAgPROTECTca
dc.relation.projectIDMICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-117142GB-I00/ES/ /DeeLightca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1016/j.compag.2023.107854ca
dc.contributor.groupÚs Eficient de l'Aigua en Agriculturaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir