Mostrar el registro sencillo del ítem

dc.contributor.authorFulladosa, E.
dc.contributor.authorBarnés-Calle, C.
dc.contributor.authorCruz, J.
dc.contributor.authorMartínez, B.
dc.contributor.authorGiró-Candanedo, M.
dc.contributor.authorComaposada, J.
dc.contributor.authorFont-i-Furnols, M.
dc.contributor.authorGou, P.
dc.contributor.otherIndústries Alimentàriesca
dc.date.accessioned2023-10-22T12:56:19Z
dc.date.available2024-07-27T22:45:41Z
dc.date.issued2023-07-28
dc.identifier.citationFulladosa, E., C Barnés-Calle, Jordi Cruz, B. Martı́Nez, Mar Giró-Candanedo, Josep Comaposada, Maria Font-I-Furnols, and P. Gou. “Near Infrared Sensors for the Precise Characterization of Salt Content in Canned Tuna Fish.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 303. doi:10.1016/j.saa.2023.123217.ca
dc.identifier.issn1386-1425ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2449
dc.description.abstractNon-invasive technologies could help to guarantee quality standards of canned tuna fish. The aim of this study was to investigate the ability of bench-top (FT-NIR) and low-cost (LC-NIR) near infrared spectrometers to determine salt content and texture in canned tuna. Salt content distribution was also investigated using hyperspectral imaging (HSI) and computed tomography. Spectra were acquired on canned tuna and reference analysis performed. Partial least squares regression and discriminant analysis were used to develop salt content predictive and texture classification models. Salt content predictive errors were 0.10%, 0.22% and 0.22% for FT-NIR, LC-NIR and HSI, respectively. Salt content was not always homogeneously distributed in the can which was attributed to the salt content differences between internal and external parts of the tuna fish. Low-cost sensors could be a suitable solution to standardise the production and enable precise nutritional labelling, but more sophisticated algorithms are needed to identify textural defects.ca
dc.description.sponsorshipThis work was supported by R&D Director (L. Caillaud) and R&D Manager (I. Lopez-Salgueiro) of Bolton Food, CCLabel project (RTI-2018-096883-R-C41), consolidated Research Group (2021 SGR 00461) and CERCA programme from Generalitat de Catalunya. Acknowledgements are extended Ministerio de Ciencia e Innovación for financing the doctorate studies of Mar Giró-Candanedo (Spanish Government, PRE2019-091224).ca
dc.format.extent23ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopyca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleNear infrared sensors for the precise characterization of salt content in canned tuna fishca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la Sociedad/RTI2018-096883-R-C41/ES/SISTEMAS DE CARACTERIZACION Y COMUNICACION DE LA CALIDAD Y LA COMPOSICION NUTRICIONAL DE LOS ALIMENTOS PARA LOS CONSUMIDORES Y LA INDUSTRIA ALIMENTARIA/ca
dc.subject.udc663/664ca
dc.identifier.doihttps://doi.org/10.1016/j.saa.2023.123217ca
dc.contributor.groupQualitat i Tecnologia Alimentàriaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir