Mostra el registre parcial de l'element

dc.contributor.authorMiranda, Juan C.
dc.contributor.authorGené-Mola, Jordi
dc.contributor.authorZude-Sasse, Manuela
dc.contributor.authorTsoulias, Nikos
dc.contributor.authorEscolà, Alexandre
dc.contributor.authorArnó, Jaume
dc.contributor.authorRosell-Polo, Joan R.
dc.contributor.authorSanz-Cortiella, Ricardo
dc.contributor.authorMartínez-Casasnovas, José A.
dc.contributor.authorGregorio, Eduard
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-10-25T15:45:15Z
dc.date.available2023-10-25T15:45:15Z
dc.date.issued2023-09-23
dc.identifier.citationMiranda, Juan Carlos, Jordi Gené-Mola, Manuela Zude-Sasse, Nikos Tsoulias, Alexandre Escolà, Jaume Arnó, Joan R. Rosell-Polo, Ricardo Sanz, José A. Martínez‐Casasnovas, and Eduard Gregorio. “Fruit Sizing Using AI: A Review of Methods and Challenges.” Postharvest Biology and Technology 206 (December 1, 2023): 112587. https://doi.org/10.1016/j.postharvbio.2023.112587.ca
dc.identifier.issn0925-5214ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2462
dc.description.abstractFruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.ca
dc.description.sponsorshipThis work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.ca
dc.format.extent18ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofPostharvest Biology and Technologyca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleFruit sizing using AI: A review of methods and challengesca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-094222-B-100/ES/Tecnologías de agricultura de precisión para optimizar el manejo de dosel foliar y la protección fitosanitaria sostenible en plantaciones de frutales/PAgFRUITca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-126648OB-100/ES/Protección de cultivos de precisión para conseguir objetivos del Pacto Verde Europeo en uso eficiente y reducción de fitosanitarios mediate Agricultura de Precisión/PAgPROTECTca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1016/j.postharvbio.2023.112587ca
dc.contributor.groupÚs Eficient de l'Aigua en Agriculturaca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Attribution 4.0 International
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix