Mostrar el registro sencillo del ítem
Fruit sizing using AI: A review of methods and challenges
| dc.contributor.author | Miranda, Juan C. | |
| dc.contributor.author | Gené-Mola, Jordi | |
| dc.contributor.author | Zude-Sasse, Manuela | |
| dc.contributor.author | Tsoulias, Nikos | |
| dc.contributor.author | Escolà, Alexandre | |
| dc.contributor.author | Arnó, Jaume | |
| dc.contributor.author | Rosell-Polo, Joan R. | |
| dc.contributor.author | Sanz-Cortiella, Ricardo | |
| dc.contributor.author | Martínez-Casasnovas, José A. | |
| dc.contributor.author | Gregorio, Eduard | |
| dc.contributor.other | Producció Vegetal | ca |
| dc.date.accessioned | 2023-10-25T15:45:15Z | |
| dc.date.available | 2023-10-25T15:45:15Z | |
| dc.date.issued | 2023-09-23 | |
| dc.identifier.citation | Miranda, Juan Carlos, Jordi Gené-Mola, Manuela Zude-Sasse, Nikos Tsoulias, Alexandre Escolà, Jaume Arnó, Joan R. Rosell-Polo, Ricardo Sanz, José A. Martínez‐Casasnovas, and Eduard Gregorio. “Fruit Sizing Using AI: A Review of Methods and Challenges.” Postharvest Biology and Technology 206 (December 1, 2023): 112587. https://doi.org/10.1016/j.postharvbio.2023.112587. | ca |
| dc.identifier.issn | 0925-5214 | ca |
| dc.identifier.uri | http://hdl.handle.net/20.500.12327/2462 | |
| dc.description.abstract | Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed. | ca |
| dc.description.sponsorship | This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU. | ca |
| dc.format.extent | 18 | ca |
| dc.language.iso | eng | ca |
| dc.publisher | Elsevier | ca |
| dc.relation.ispartof | Postharvest Biology and Technology | ca |
| dc.rights | Attribution 4.0 International | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.title | Fruit sizing using AI: A review of methods and challenges | ca |
| dc.type | info:eu-repo/semantics/article | ca |
| dc.description.version | info:eu-repo/semantics/publishedVersion | ca |
| dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
| dc.embargo.terms | cap | ca |
| dc.relation.projectID | MICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-094222-B-100/ES/Tecnologías de agricultura de precisión para optimizar el manejo de dosel foliar y la protección fitosanitaria sostenible en plantaciones de frutales/PAgFRUIT | ca |
| dc.relation.projectID | MICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-126648OB-100/ES/Protección de cultivos de precisión para conseguir objetivos del Pacto Verde Europeo en uso eficiente y reducción de fitosanitarios mediate Agricultura de Precisión/PAgPROTECT | ca |
| dc.relation.projectID | FEDER/ / /EU/ / | ca |
| dc.subject.udc | 633 | ca |
| dc.identifier.doi | https://doi.org/10.1016/j.postharvbio.2023.112587 | ca |
| dc.contributor.group | Ús Eficient de l'Aigua en Agricultura | ca |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
ARTICLES CIENTÍFICS [3.467]

