Show simple item record

dc.contributor.authorPérez de los Cobos, Felipe
dc.contributor.authorGarcía-Gómez, Beatriz E.
dc.contributor.authorOrduña-Rubio, Luis
dc.contributor.authorBatlle, Ignasi
dc.contributor.authorArús, Pere
dc.contributor.authorTomás Matus, José
dc.contributor.authorEduardo, Iban
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2024-03-09T18:49:22Z
dc.date.available2024-03-09T18:49:22Z
dc.date.issued2024-01-02
dc.identifier.citationDe Los Cobos, Felipe Pérez, Beatriz Ester García-Gómez, Luis Orduña-Rubio, I. Batlle, Pere Arús, José Tomás Matus, and Iban Eduardo. 2024. “Exploring Large-scale Gene Coexpression Networks in Peach (Prunus Persica L.): A New Tool for Predicting Gene Function.” Horticulture Research, 11 (2): uhad294. doi:10.1093/hr/uhad294.ca
dc.identifier.issn2052-7276ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2871
dc.description.abstractPeach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene–gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the ‘guilty-by-association’ principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.ca
dc.description.sponsorshipWe acknowledge financial support through the Severo Ochoa Programme for Centers of Excellence in R&D (SEV-2015-0533 and CEX2019-000902-S). Also, this work was funded by the Spanish Ministry of Science and Innovation through the Estate Agency of Research: Project PID2020-118612RR-I00 (Better Almonds) and PID2019-110599RR-I00. Authors F.P. C., I. E., I. B. are grateful to CERCA Program from Generalitat of Catalonia for its support. F. P. C. wishes to acknowledge the receipt of a FPI doctoral fellowship from the Spanish Ministry of Science and Innovation. This work was also supported by grants PID2021-128865NB-I00 and RYC- 2017-23645 awarded to J.T.M. and the PRE2019-088044 fellowship awarded to L.O. from the Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, European Union).ca
dc.format.extent13ca
dc.language.isoengca
dc.publisherOxford University Pressca
dc.relation.ispartofHorticulture Researchca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleExploring large-scale gene coexpression networks in peach (Prunus persica L.): a new tool for predicting gene functionca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.relation.projectIDMINECO/Programa Estatal de fomento de la investigación científica y técnica de excelencia/SEV-2015-0533/ES/ /ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2019-000902-S/ES/ /ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-118612RR-I00/ES/Mejora genética de variedades de almendro/ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2019-110599RR-I00/ES/Aplication of Marker Assisted Introgression and Resynthesis in peach/MAIRESca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-128865NB-I00/ES/Validación y visualización de redes reguladoras del metabolismo especializado de plantas integrando métodos ómicos/ca
dc.relation.projectIDMINECO/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC-2017-23645/ES/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1093/hr/uhad294ca
dc.contributor.groupFructiculturaca
dc.contributor.groupGenòmica i Biotecnologiaca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint