Show simple item record

dc.contributor.authorCalle, Alejandro
dc.contributor.authorAdelberg, Jeffrey
dc.contributor.authorSchnabel, Guido
dc.contributor.authorNaylor-Adelberg, Jacqueline
dc.contributor.authorGelain, Jhulia
dc.contributor.authorKarakoc, Yeter
dc.contributor.authorWeaver, Jared
dc.contributor.authorSaski, Christopher
dc.contributor.authorGasic, Ksenija
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2024-10-30T17:46:33Z
dc.date.available2024-10-30T17:46:33Z
dc.date.issued2024-09-23
dc.identifier.citationCalle, Alejandro, Jeffrey Adelberg, Guido Schnabel, Jacqueline Naylor-Adelberg, Jhulia Gelain, Yeter Karakoc, Jared Weaver, Christopher Saski, and Ksenija Gasic. 2024. “In Vitro Co-culture System for Investigating Armillaria Root Rot in Prunus Spp. Using a Fiber-supported Liquid Approach.” PLoS ONE 19 (9): e0310314. https://doi.org/10.1371/journal.pone.0310314.ca
dc.identifier.issn1932-6203ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/3360
dc.description.abstractIn vitro co-culture techniques that allow the growth of plants and pathogens under controlled environmental conditions are being used to re-create host plant infection. These approaches reduce infection times, promote reproducibility, and enable a rapid evaluation of plant-pathogen interactions. As a result, these systems have become essential in breeding programs aimed at developing plant resistance to diseases. In this study, we developed and validated an in vitro co-culture system to investigate the Armillaria root rot (ARR) affecting Prunus spp. This disease, caused by fungi Armillaria spp. and Desarmillaria caespitosa, poses a severe threat to the stone and nut fruit industry due to the susceptibility of most commercial rootstocks to infection and the lack of effective management options for its control. The system consists of a fiber-supported liquid approach in sterile plastic vessels that allows a fast and reproducible fungal infection under controlled environmental conditions. The floor of the vessels was covered with a polyester-fiber matte and a germination paper that served as an interface between the mycelia and the plant roots. The vessels were subjected to inoculation with Armillaria mellea and D. caespitosa, and three Prunus genotypes (‘Guardian®’, ‘MP-29’, and Prunus cerasifera ‘14–4’) were co-cultured with both fungi. Disease progression and plant and fungal biomass were monitored during co-culture. The presented in vitro co-culture approach facilitates the concurrent growth of Armillaria/ Desarmillaria spp. and Prunus spp., excluding most of the limitations associated with greenhouses and field experiments. This system provides consistent and reproducible conditions for investigating a prominent plant disease affecting Prunus spp.ca
dc.description.sponsorshipThis work is funded by NIFA-USDA Specialty Crop Research Initiative project# 2020-51181-32142. "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.ca
dc.format.extent12ca
dc.language.isoengca
dc.publisherPublic Library of Scienceca
dc.relation.ispartofPloS ONEca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleIn vitro co-culture system for investigating Armillaria root rot in Prunus spp. using a fibersupported liquid approachca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc632ca
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0310314ca
dc.contributor.groupFructiculturaca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint