Mostra el registre parcial de l'element

dc.contributor.authorJung, Michaela
dc.contributor.authorQuesada-Traver, Carles
dc.contributor.authorRoth, Morgane
dc.contributor.authorAranzana, Maria José
dc.contributor.authorMuranty, Hélène
dc.contributor.authorRymenants, Marijn
dc.contributor.authorGuerra, Walter
dc.contributor.authorHolzknecht, Elias
dc.contributor.authorPradas, Nicole
dc.contributor.authorLozano, Lidia
dc.contributor.authorDidelot, Frédérique
dc.contributor.authorLaurens, François
dc.contributor.authorYates, Steven
dc.contributor.authorStuder, Bruno
dc.contributor.authorBroggini, Giovanni A.L.
dc.contributor.authorPatocchi, Andrea
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2025-03-20T17:54:07Z
dc.date.available2025-03-20T17:54:07Z
dc.date.issued2025-02-01
dc.identifier.citationJung, Michaela, Carles Quesada-Traver, Morgane Roth, Maria José Aranzana, Hélène Muranty, Marijn Rymenants, Walter Guerra, et al. 2024. “Integrative Multi-environmental Genomic Prediction in Apple.” Horticulture Research 12 (2): uhae319. https://doi.org/10.1093/hr/uhae319.ca
dc.identifier.issn2052-7276ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/3736
dc.description.abstractGenomic prediction for multiple environments can aid the selection of genotypes suited to specific soil and climate conditions. Methodological advances allow effective integration of phenotypic, genomic (additive, nonadditive), and large-scale environmental (enviromic) data into multi-environmental genomic prediction models. These models can also account for genotype-by-environment interaction, utilize alternative relationship matrices (kernels), or substitute statistical approaches with deep learning. However, the application of multi-environmental genomic prediction in apple remained limited, likely due to the challenge of building multi-environmental datasets and structurally complex models. Here, we applied efficient statistical and deep learning models for multi-environmental genomic prediction of eleven apple traits with contrasting genetic architectures by integrating genomic- and enviromic-based model components. Incorporating genotype-by-environment interaction effects into statistical models improved predictive ability by up to 0.08 for nine traits compared to the benchmark model. This outcome, based on Gaussian and Deep kernels, shows these alternatives can effectively substitute the standard genomic best linear unbiased predictor (G-BLUP). Including nonadditive and enviromic-based effects resulted in a predictive ability very similar to the benchmark model. The deep learning approach achieved the highest predictive ability for three traits with oligogenic genetic architectures, outperforming the benchmark by up to 0.10. Our results demonstrate that the tested statistical models capture genotype-by-environment interactions particularly well, and the deep learning models efficiently integrate data from diverse sources. This study will foster the adoption of multi-environmental genomic prediction to select apple cultivars adapted to diverse environmental conditions, providing an opportunity to address climate change impacts.ca
dc.description.sponsorshipThe authors thank the field technicians and staff at INRAe IRHS and Experimental Unit (UE Horti), Angers, France, the Fruit Breeding Group at Agroscope in Waedenswil, Switzerland, and technical staff at all apple REFPOP sites for the maintenance of the orchards and phenotypic data collection. Phenotypic data collection was partially supported by the Horizon 2020 Framework Program of the European Union under grant agreement No 817970 (project INVITE: ‘Innovations in plant variety testing in Europe to foster the introduction of new varieties better adapted to varying biotic and abiotic conditions and to more sustainable crop management practices’). C.Q.-T. was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 847585 – RESPONSE. This study was partially funded by the FOAG project ‘Apfelzukunft dank Züchtung’ (2020/17/AZZ).ca
dc.format.extent15ca
dc.language.isoengca
dc.publisherOxford University Pressca
dc.relation.ispartofHorticulture Researchca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleIntegrative multi-environmental genomic prediction in appleca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDEC/H2020/817970/EU/INnovations in plant VarIety Testing in Europe to foster the introduction of new varieties better adapted to varying biotic and abiotic conditions and to more sustainable crop management practices/INVITEca
dc.relation.projectIDEC/H2020/847585/EU/RESPONSE - to society and policy needs through plant, food and energy sciences/RESPONSEca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1093/hr/uhae319ca
dc.contributor.groupGenòmica i Biotecnologiaca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Attribution 4.0 International
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix