Show simple item record

dc.contributor.authorJauregui-Besó, Jara
dc.contributor.authorGracia-Romero, Adrian
dc.contributor.authorCarrera, Constanza S.
dc.contributor.authorLopes, Marta S.
dc.contributor.authorAraus, José Luis
dc.contributor.authorKefauver, Shawn Carlisle
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2025-05-09T08:49:05Z
dc.date.available2025-05-09T08:49:05Z
dc.date.issued2025-03-29
dc.identifier.citationJauregui-Besó, Jara, Adrian Gracia-Romero, Constanza S. Carrera, Marta Da Silva Lopes, José Luis Araus, and Shawn Carlisle Kefauver. 2025. “Winter wheat plant density determination: Robust predictions across varied agronomic conditions using multiscale RGB imaging.” Smart Agricultural Technology, March, 100921. https://doi.org/10.1016/j.atech.2025.100921.ca
dc.identifier.issn2772-3755ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/3817
dc.description.abstractCereal plant density is a crucial agronomic factor affecting resource management and yield. This study automated wheat density estimation using multiscale imaging from ground and Unmanned Aerial Vehicles (UAV) at 15, 30, and 50m Conducted over two agronomic seasons (2022 and 2023) with different water profiles, it analyzed three wheat genotypes (cv. Bologna, Hondia, and Marcopolo) sown at five densities ranging from 35 to 560 seeds m-2. Images collected through RGB sensors across Haun's developmental stages 2.6 – 12.2 provided data for calculating 15 Vegetation Indexes (VIs), which, along with their Principal Components (PCs), were used as inputs for Ridge and Principal Component Regression (PCR) models. Training was conducted on the 2022 datasets using 4-fold, 10-repeated cross-validation to determine the most predictive growth stages, with Haun stages 5.3 to 7.3 yielding the best results, irrespective of resolution. Testing on 2023 datasets showed that Ridge models consistently outperformed PCR, especially for medium to high-density ranges (140–560 seeds m-2), though they underperformed at lower densities, leading to their exclusion from the testing data. The top-performing Ridge model, trained on Haun stages 7.1–7.3 at 50 m (1.18 cm pixel-1), achieved Mean Absolute Percentage Error (MAPE) 17.91% – 28.54% (0.9 – 0.68 R2) values across various test sets, with stable performance throughout resolutions and stages (4.4 – 4.8). These findings show robust prediction capabilities across a broader developmental range and from the lowest resolution recorded, especially when vegetation coverage is abundant. The study highlights the practicality of high-throughput RGB imaging for scalable, flexible and affordable plant density estimation.ca
dc.description.sponsorshipThis work was supported by the Spanish projects “HolisticWheat” (PID2022-138307OB-C21), Ministerio de Ciencia e Innovación, Spain and “DENSIPLANT” from the CERCA Center Agrotecnio, Generalitat de Catalunya, Spain J.J.-B. was supported by INVESTIGO 2022 program from Plan de Recuperación, Transformación y Resiliencia (NextGenerationEU). Currently J.J.-B. is recipient of a FPI doctoral fellowship PREP2022-000560 funded by MICIU/AEI/10.13039/501100011033 and FSE+. C.S.C. held a Maria Zambrano's fellowship from the University of Lleida funded by Spanish Ministry of Universities and the European Social Fundand currently is contracted by the project PID2021-127415OB-I00 funded by AEI (State Research Agency of Spain). S.C.K. is supported by the Ramon y Cajal RYC-2019-027818-I research fellowship from the Ministerio de Ciencia e Innovación, MINECO, Spain. We also acknowledge the support from the Institut de Recerca de l'Aigua and the Universitat de Barcelona.
dc.format.extent16ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofSmart Agricultural Technologyca
dc.rightsAttribution-NonCommercial 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleWinter wheat plant density determination: Robust predictions across varied agronomic conditions using multiscale RGB imagingca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2022-138307OB-C21/ES/Fenotipado holístico del trigo: Ideotipo a nivel de cultivo y fusión de tecnologías de sensores/HolisticWheatca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-127415OB-I00/ES/Fertilidad de espigas en trigo: Rol de genes promisorios, variabilidad en material élite, plasticidad y compensaciones/ca
dc.relation.projectIDMICIU/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC2019-027818-I/ES/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1016/j.atech.2025.100921ca
dc.contributor.groupCultius Extensius Sosteniblesca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint