Mostrar el registro sencillo del ítem

dc.contributor.authordos Santos, Ricardo
dc.contributor.authorCruz, J.
dc.contributor.authorMuñoz, Israel
dc.contributor.authorGou, Pere
dc.contributor.authorNordon, A.
dc.contributor.authorFulladosa, Elena
dc.contributor.otherIndústries Alimentàriesca
dc.date.accessioned2025-05-30T05:04:47Z
dc.date.issued2025-03-25
dc.identifier.citationDos Santos, R., J. Cruz, I. Muñoz, P. Gou, A. Nordon, and E. Fulladosa. 2025. “Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms”. Spectrochimica Acta Part a Molecular and Biomolecular Spectroscopy, 126114. doi:10.1016/j.saa.2025.126114.ca
dc.identifier.issn1386-1425ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/4561
dc.description.abstractThe non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat analogues. This study aims to analyse the composition and presence of gluten in blended plant-based alternative protein sources from pulse, cereal and pseudocereal origin by means of near infrared spectroscopy (NIRS) and mid infrared spectroscopy (MIRS) using conventional and machine learning algorithms. Blends were prepared using five alternative protein sources (barley, wheat, fava bean, lupin, and buckwheat) and spectra were acquired using a low-cost and a benchtop near-infrared spectrometer, and a mid-infrared spectrometer. Using the acquired spectra, partial least square regression (PLSR), support vector machine discriminant analysis (SVM-DA), partial least square discriminant analysis (PLS-DA), and convolutional neural networks (CNN) were used to develop predictive models to determine the composition and to identify samples containing gluten. The protein, moisture, carbohydrates and fat content in blends of alternative protein sources was determined with a RMSEP of 1.59, 0.18, 1.41, and 0.19 %, respectively, when using the benchtop NIR spectrometer and PLSR. Gluten-free samples were identified with high sensitivity (0.85) and accuracy (0.93) using PLS-DA. The study demonstrated that infrared spectroscopy can be used to analyse the composition of blends of alternative protein sources including pulses, cereals, and pseudocereals, as well as to identify gluten-free samples.ca
dc.description.sponsorshipThis research was supported by project Sensanalog [PID2021-122285OR-I00] funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. The first author received the grant [PRE2022-103798] funded by MICIU/AEI/10.13039/501100011033 and ESF+. Acknowledgements are extended to the consolidated research group (2021 SGR 00461) and CERCA program from Generalitat de Catalunya. Elena Fulladosa was supported by a mobility grant within the Incentives for Research Program 2023 by the Institute of Agrifood Research and Technology (IRTA).
dc.format.extent29ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopyca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleCompositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms☆ca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-122285OR-I00/ES/Sensors and algorithms to optimize high moisture meat analogue production when using novel protein sources/SENSANALOGca
dc.subject.udc663/664ca
dc.identifier.doihttps://doi.org/10.1016/j.saa.2025.126114ca
dc.contributor.groupQualitat i Tecnologia Alimentàriaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir