Mostra el registre parcial de l'element

dc.contributor.authorEngstrøm, Ole-Christian Galbo
dc.contributor.authorAlbano-Gaglio, Michela
dc.contributor.authorDreier, Erik Schou
dc.contributor.authorBouzembrak, Yamine
dc.contributor.authorFont i Furnols, Maria
dc.contributor.authorMishra, Puneet
dc.contributor.authorPedersen, Kim Steenstrup
dc.contributor.otherIndústries Alimentàriesca
dc.date.accessioned2025-09-19T18:29:19Z
dc.date.available2025-09-19T18:29:19Z
dc.date.issued2025-07-16
dc.identifier.citationEngstrøm, Ole-Christian Galbo, Michela Albano‐Gaglio, Erik Schou Dreier, Yamine Bouzembrak, Maria Font‐i‐Furnols, Puneet Mishra, and Kim Steenstrup Pedersen. 2025. “Transforming hyperspectral images into chemical maps: a novel End‐to‐End Deep Learning approach”. Journal of Chemometrics, 39(8): e70041. doi:10.1002/cem.70041.ca
dc.identifier.issn0886-9383ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/4735
dc.description.abstractCurrent approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. The U-Net is compared with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0%–100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.ca
dc.description.sponsorshipThis work was supported by The Innovation Fund Denmark and FOSS Analytical A/S (grant number 1044-00108B); FEDER and MICIU/AEI/10.13039/501100011033/ (grant number RTI2018-096993-B-I00, 2019–2022); and the Spanish National Institute of Agricultural Research (INIA) (grant number PRE2019-089669, 2020–2024).ca
dc.format.extent17ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofJournal of Chemometricsca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTransforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approachca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-096993-B-I00/ES/CLASIFICACION Y EVALUACION DE LA CALIDAD GLOBAL DE LA PANCETA DE CERDO MEDIANTE TECNOLOGIAS NO DESTRUCTIVAS Y PERCEPCION POR PARTE DE LOS CONSUMIDORES/ca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.subject.udc663/664ca
dc.identifier.doihttps://doi.org/10.1002/cem.70041ca
dc.contributor.groupQualitat i Tecnologia Alimentàriaca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Attribution 4.0 International
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix