Mostrar el registro sencillo del ítem
Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach
| dc.contributor.author | Engstrøm, Ole-Christian Galbo | |
| dc.contributor.author | Albano-Gaglio, Michela | |
| dc.contributor.author | Dreier, Erik Schou | |
| dc.contributor.author | Bouzembrak, Yamine | |
| dc.contributor.author | Font i Furnols, Maria | |
| dc.contributor.author | Mishra, Puneet | |
| dc.contributor.author | Pedersen, Kim Steenstrup | |
| dc.contributor.other | Indústries Alimentàries | ca |
| dc.date.accessioned | 2025-09-19T18:29:19Z | |
| dc.date.available | 2025-09-19T18:29:19Z | |
| dc.date.issued | 2025-07-16 | |
| dc.identifier.citation | Engstrøm, Ole-Christian Galbo, Michela Albano‐Gaglio, Erik Schou Dreier, Yamine Bouzembrak, Maria Font‐i‐Furnols, Puneet Mishra, and Kim Steenstrup Pedersen. 2025. “Transforming hyperspectral images into chemical maps: a novel End‐to‐End Deep Learning approach”. Journal of Chemometrics, 39(8): e70041. doi:10.1002/cem.70041. | ca |
| dc.identifier.issn | 0886-9383 | ca |
| dc.identifier.uri | http://hdl.handle.net/20.500.12327/4735 | |
| dc.description.abstract | Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. The U-Net is compared with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0%–100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation. | ca |
| dc.description.sponsorship | This work was supported by The Innovation Fund Denmark and FOSS Analytical A/S (grant number 1044-00108B); FEDER and MICIU/AEI/10.13039/501100011033/ (grant number RTI2018-096993-B-I00, 2019–2022); and the Spanish National Institute of Agricultural Research (INIA) (grant number PRE2019-089669, 2020–2024). | ca |
| dc.format.extent | 17 | ca |
| dc.language.iso | eng | ca |
| dc.publisher | Wiley | ca |
| dc.relation.ispartof | Journal of Chemometrics | ca |
| dc.rights | Attribution 4.0 International | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.title | Transforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approach | ca |
| dc.type | info:eu-repo/semantics/article | ca |
| dc.description.version | info:eu-repo/semantics/publishedVersion | ca |
| dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
| dc.embargo.terms | cap | ca |
| dc.relation.projectID | MICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-096993-B-I00/ES/CLASIFICACION Y EVALUACION DE LA CALIDAD GLOBAL DE LA PANCETA DE CERDO MEDIANTE TECNOLOGIAS NO DESTRUCTIVAS Y PERCEPCION POR PARTE DE LOS CONSUMIDORES/ | ca |
| dc.relation.projectID | FEDER/ / /EU/ / | ca |
| dc.subject.udc | 663/664 | ca |
| dc.identifier.doi | https://doi.org/10.1002/cem.70041 | ca |
| dc.contributor.group | Qualitat i Tecnologia Alimentària | ca |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
ARTICLES CIENTÍFICS [3.467]

