Mostrar el registro sencillo del ítem

dc.contributor.authorEngstrøm, Ole-Christian Galbo
dc.contributor.authorAlbano-Gaglio, Michela
dc.contributor.authorDreier, Erik Schou
dc.contributor.authorBouzembrak, Yamine
dc.contributor.authorFont i Furnols, Maria
dc.contributor.authorMishra, Puneet
dc.contributor.authorPedersen, Kim Steenstrup
dc.contributor.otherIndústries Alimentàriesca
dc.date.accessioned2025-09-19T18:29:19Z
dc.date.available2025-09-19T18:29:19Z
dc.date.issued2025-07-16
dc.identifier.citationEngstrøm, Ole-Christian Galbo, Michela Albano‐Gaglio, Erik Schou Dreier, Yamine Bouzembrak, Maria Font‐i‐Furnols, Puneet Mishra, and Kim Steenstrup Pedersen. 2025. “Transforming hyperspectral images into chemical maps: a novel End‐to‐End Deep Learning approach”. Journal of Chemometrics, 39(8): e70041. doi:10.1002/cem.70041.ca
dc.identifier.issn0886-9383ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/4735
dc.description.abstractCurrent approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. The U-Net is compared with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0%–100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.ca
dc.description.sponsorshipThis work was supported by The Innovation Fund Denmark and FOSS Analytical A/S (grant number 1044-00108B); FEDER and MICIU/AEI/10.13039/501100011033/ (grant number RTI2018-096993-B-I00, 2019–2022); and the Spanish National Institute of Agricultural Research (INIA) (grant number PRE2019-089669, 2020–2024).ca
dc.format.extent17ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofJournal of Chemometricsca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTransforming Hyperspectral Images Into Chemical Maps: A Novel End-to-End Deep Learning Approachca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de I+D+I orientada a los retos de la sociedad/RTI2018-096993-B-I00/ES/CLASIFICACION Y EVALUACION DE LA CALIDAD GLOBAL DE LA PANCETA DE CERDO MEDIANTE TECNOLOGIAS NO DESTRUCTIVAS Y PERCEPCION POR PARTE DE LOS CONSUMIDORES/ca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.subject.udc663/664ca
dc.identifier.doihttps://doi.org/10.1002/cem.70041ca
dc.contributor.groupQualitat i Tecnologia Alimentàriaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir