Show simple item record

dc.contributor.authorJové-Juncà, Teodor
dc.contributor.authorHaas, V.P.
dc.contributor.authorCalus, M.P.L.
dc.contributor.authorBallester Devis, Maria
dc.contributor.authorQuintanilla, Raquel
dc.contributor.otherProducció Animalca
dc.date.accessioned2026-01-29T19:30:26Z
dc.date.available2026-01-29T19:30:26Z
dc.date.issued2025-12-16
dc.identifier.issn1751-7311ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/5015
dc.description.abstractConsidering health-related traits among breeding selection criteria has been proposed as a way to improve pig robustness. This study investigated the potential of whole blood RNA-sequencing data for predicting immunity-related traits, stress indicators and carcass weight, using data from 255 pigs belonging to a commercial Duroc population. The prediction performance of mixed models fitting either genomic (G), transcriptomic (T) or both effects as independent (GT) was evaluated and compared. Three additional models addressing the redundant information between G and T were also evaluated: the GTC model that subtracts the genetic effect from the transcriptome, the GTCi model that makes this correction based on the estimated heritability of T effects, and a multiomic model that weights G and T effects in a multiomics relationship matrix. The models including gene expression information captured a higher proportion of variance than the genomic model for all studied traits but carcass weight. Adding transcriptomic effects improved both model fit and phenotypic prediction of all immunity traits, particularly those with a high transcriptomic contribution such as the abundance of T helper and γδ T cells, the haptoglobin concentration and the leukocyte counts. Considering the interaction between genomic and transcriptomic effects led to greater prediction accuracies, with the GTCi model performing the best. Our work demonstrates the value of considering gene expression data to predict immunity traits as well as the importance of adequately modelling the interaction between genomic and transcriptomic effects.ca
dc.description.sponsorshipThis study was funded by grants PID2020-112677RB-C21 and PID2023-148961OB-C21 awarded by MCIN/AEI/10.13039/501100011033. Jové-Juncà, T. was supported by an IRTA fellowship (CPI1221).ca
dc.format.extent13ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofAnimalca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleUsing transcriptomic data to improve the prediction of immunity traits in pigsca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/PID2020-112677RB-C21/ES/FISIOLOGIA MOLECULAR DEL INMUNOMETABOLISMO EN PORCINO: BASES PARA LA SELECCION DE POBLACIONES MAS ROBUSTAS/ca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2023-148961OB-C21/ES/MEJORA GENETICA DE LA SALUD PORCINA: IDENTIFICACION Y VALIDACION DE BIOMARCADORES Y MODELOS PREDICTIVOS DE LA INMUNOCOMPETENCIA/ca
dc.subject.udc577ca
dc.identifier.doihttps://doi.org/10.1016/j.animal.2025.101742ca
dc.contributor.groupGenètica i Millora Animalca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint