Show simple item record

dc.contributor.authorIglesias-Sanchez, Ariadna
dc.contributor.authorGarcía-Carbonell, Sergio
dc.contributor.authorFernie, Alisdair R.
dc.contributor.authorPujol, Marta
dc.contributor.authorFlorez-Sarasa, Igor
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2026-02-20T10:16:00Z
dc.date.available2026-02-20T10:16:00Z
dc.date.issued2026-02-10
dc.identifier.issn0028-646Xca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/5074
dc.description.abstractOver the past century, research has significantly advanced our understanding of fruit respiration, from (eco)physiological processes to molecular mechanisms. This review focuses on the functional relevance and regulatory roles of mitochondrial alternative respiratory pathways (ARPs) during fruit growth and ripening. We revisit classical distinctions between climacteric and nonclimacteric fruits, considering recent insights into the alternative oxidase, uncoupling proteins, and type II NAD(P)H dehydrogenases (NDIIs). These components are increasingly recognized as central to maintaining metabolic flexibility, energy balance, and redox homeostasis, supporting both primary and secondary metabolism. We highlight how CO2 refixation and organic acid metabolism, often displaying C4/CAM-like features, impose specific demands on mitochondrial electron transport, and how spatial heterogeneity in metabolism and O2 availability across fruit tissues can shape respiratory activity. Interactions between fruit photosynthesis and respiration remain poorly understood, particularly under stress. The interplay between respiration, ethylene biosynthesis, and signaling is discussed, emphasizing feedback loops involving mitochondrial retrograde regulation and redox-sensitive control of ripening. Key knowledge gaps include in vivo flux analyses, tissue-resolved energy profiling, and functional characterization of underexplored ARP components. Finally, we outline postharvest and metabolic engineering strategies targeting ARPs as complementary to ethylene-centered approaches to improve fruit quality, stress resilience, and nutritional value.ca
dc.description.sponsorshipThis work was supported by grants PID2020-120229RA-I00 and PID2024-163099NB-I00 to IF-S, and PID2021-125998OB-C21 to MP, all funded by MICIU/AEI/10.13039/501100011033 and by ‘ERDF/ EU’, Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación (MCIU/AEI, Spain). We also thank the support of grants Plant Genetics-2021SGR00756 funded by Generalitat de Catalunya, RedoxPlant-RED2022-134072-T funded by MICIU/AEI/10.13039/501100011033 (MCIU/AEI, Spain), as well as CEX2019-000902-S funded by MICIU/AEI/ 10.13039/501100011033 (MCIU/AEI, Spain) and CERCA Programme (Generalitat de Catalunya) to CRAG. AI-S received a predoctoral fellowship (PRE2018-083610) funded by MICIU/AEI/10.13039/501100011033 and by ‘ESF Investing in your future’. SG-C received a predoctoral fellowship (PRE2021-097127) funded by MICIU/AEI/10.13039/501100011033 and by ‘ESF Investing in your future’. IF-S received funding from the ‘Ramon y Cajal’ contract RYC2019-028030-I funded by MCIN/ AEI /10.13039/501100011033 and by ‘ESF Investing in your future’.
dc.format.extent20ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofNew Phytologistca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleFruit respiration: putting alternative pathways into perspectiveca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/ PID2020-120229RA-I00/ES/ HACIA UNA INGENIERIA DEL METABOLISMO MITOCONDRIAL PARA LA MEJORA DE LA PRODUCTIVIDAD Y CALIDAD DE FRUTOS DE CULTIVOS HORTICOLAS BAJO CONDICIONES DE CAMBIO CLIMATICO/TOMICROPca
dc.relation.projectIDMICIU/Programa para la Investigación y el Desarrollo Experimental/PID2024-163099NB-I00/ES/ARROJANDO LUZ SOBRE LA RESPIRACIÓN MITOCONDRIAL EN LA MADURACIÓN DE FRUTOS Y SU VÍNCULO CON METABOLITOS BENEFICIOSOS PARA LA SALUD/MITORIPENca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-125998OB-C21/ES/Variabilidad natural y edición genética para diseccionar la calidad de fruto y la resistencia a enfermedades en melónca
dc.relation.projectIDMICINN/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I y Programa Estatal de I+D+I orientada a los retos de la sociedad/RED2022-134072-T/ES/Integración de la Señalización Redox en el Desarrollo y la Adaptación de las Plantas a Estrés Medioambiental/RedoxPlantca
dc.relation.projectIDEC/H2020/945043/EU/Agricultural Genomics Transversal Postdoctoral Program/AgenTca
dc.relation.projectIDMICIU/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/ RYC2019-028030-I/ES/ /ca
dc.relation.projectIDFEDER/ / /EU/ /
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2019-000902-S/ES/ /
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.1111/nph.70882ca
dc.contributor.groupGenòmica i Biotecnologiaca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint