Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery
View/Open
Author
Kustas, William P.
Torres-Rúa, Alfonso
Alfieri, Joseph G.
Gao, Feng
Anderson, Martha C.
White, W. Alex
Song, Lisheng
Alsina, María del Mar
Prueger, John H.
McKee, Mac
Elarab, Manal
McKee, Lynn G.
Publication date
2018-09-14ISSN
0342-7188
Abstract
The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from an unmanned aerial vehicle were collected over vineyards in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment and used in four different TSEB approaches to estimate the component soil and canopy temperatures, and ET partitioning between soil and canopy. Two approaches rely on the use of composite Trad, and assume initially that the canopy transpires at the Priestley–Taylor potential rate. The other two algorithms are based on the contextual relationship between optical and thermal imagery partition Trad into soil and canopy component temperatures, which are then used to drive the TSEB without requiring a priori assumptions regarding initial canopy transpiration rate. The results showed that a simple contextual algorithm based on the inverse relationship of a vegetation index and Trad to derive soil and canopy temperatures yielded the closest agreement with flux tower measurements. The utility in very high-resolution remote-sensing data for estimating ET and E and T partitioning at the canopy level is also discussed.
Document Type
Article
Document version
Accepted version
Language
English
Subject (CDU)
631 - Agriculture in general
634 - Fruit growing
Pages
29
Publisher
Springer
Is part of
Irrigation Science
Citation
Nieto, Héctor, William P. Kustas, Alfonso Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, and W. Alex White et al. 2018. "Evaluation Of TSEB Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From UAV Thermal And Multispectral Imagery". Irrigation Science 37 (3): 389-406. doi:10.1007/s00271-018-0585-9.
Program
Ús Eficient de l'Aigua en Agricultura
This item appears in the following Collection(s)
- ARTICLES CIENTÍFICS [2340]
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/