Show simple item record

dc.contributor.authorRoca-Pinilla, Ramon
dc.contributor.authorFortuna, Sara
dc.contributor.authorNatalello, Antonino
dc.contributor.authorSánchez-Chardi, Alejandro
dc.contributor.authorAmi, Diletta
dc.contributor.authorArís, Anna
dc.contributor.authorGarcia-Fruitós, Elena
dc.contributor.otherProducció Animalca
dc.date.accessioned2020-10-14T14:16:09Z
dc.date.available2020-10-14T14:16:09Z
dc.date.issued2020-09-04
dc.identifier.citationRoca-Pinilla, Ramon, Sara Fortuna, Antonino Natalello, Alejandro Sánchez-Chardi, Diletta Ami, Anna Arís, and Elena Garcia-Fruitós. 2020. "Exploring The Use Of Leucine Zippers For The Generation Of A New Class Of Inclusion Bodies For Pharma And Biotechnological Applications". Microbial Cell Factories 19 (1). doi:10.1186/s12934-020-01425-x.ca
dc.identifier.issn1475-2859ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/925
dc.description.abstractBackground Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. Results Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. Conclusions This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications.ca
dc.format.extent13ca
dc.language.isoengca
dc.publisherBMCca
dc.relation.ispartofMicrobial Cell Factoriesca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleExploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applicationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc57ca
dc.subject.udc573ca
dc.subject.udc576ca
dc.subject.udc579ca
dc.subject.udc61ca
dc.subject.udc615ca
dc.identifier.doihttps://doi.org/10.1186/s12934-020-01425-xca
dc.contributor.groupProducció de Remugantsca


Files in this item

 
 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint