kernInt: A Kernel Framework for Integrating Supervised and Unsupervised Analyses in Spatio-Temporal Metagenomic Datasets
Visualitza/Obre
Autor/a
Ramon, Elies
Belanche-Muñoz, Lluís
Molist, Francesc
Perez-Enciso, Miguel
Data de publicació
2021-01-28ISSN
1664-302X
Resum
The advent of next-generation sequencing technologies allowed relative quantification of microbiome communities and their spatial and temporal variation. In recent years, supervised learning (i.e., prediction of a phenotype of interest) from taxonomic abundances has become increasingly common in the microbiome field. However, a gap exists between supervised and classical unsupervised analyses, based on computing ecological dissimilarities for visualization or clustering. Despite this, both approaches face common challenges, like the compositional nature of next-generation sequencing data or the integration of the spatial and temporal dimensions. Here we propose a kernel framework to place on a common ground the unsupervised and supervised microbiome analyses, including the retrieval of microbial signatures (taxa importances). We define two compositional kernels (Aitchison-RBF and compositional linear) and discuss how to transform non-compositional beta-dissimilarity measures into kernels. Spatial data is integrated with multiple kernel learning, while longitudinal data is evaluated by specific kernels. We illustrate our framework through a single point soil dataset, a human dataset with a spatial component, and a previously unpublished longitudinal dataset concerning pig production. The proposed framework and the case studies are freely available in the kernInt package at https://github.com/elies-ramon/kernInt.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
619 - Veterinària
Pàgines
14
Publicat per
Frontiers Media
Publicat a
Frontiers in Microbiology
Citació
Ramon, Elies, Lluís Belanche-Muñoz, Francesc Molist, Raquel Quintanilla, Miguel Perez-Enciso, and Yuliaxis Ramayo-Caldas. 2021. "Kernint: A Kernel Framework For Integrating Supervised And Unsupervised Analyses In Spatio-Temporal Metagenomic Datasets". Frontiers In Microbiology 12. doi:10.3389/fmicb.2021.609048.
Número de l'acord de la subvenció
MICIU-AEI/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/PID2019-108829RB-I00/ES/LA BELLEZA DE LO PROFUNDO: APLICACIONES DEL DEEP LEARNING A LA PREDICCION GENOMICA/
MINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2016-78709-R/ES/UTILIZACION DE SECUENCIAS COMPLETAS PARA LA MEJORA DE ESPECIES DOMESTICAS/
MINECO/Programa Estatal de I+D+I orientada a los retos de la sociedad/AGL2017-88849-R/ES/MICROBIOTA INTESTINAL Y GENETICA DEL HUESPED: CONTRIBUCION CONJUNTA A LA EFICIENCIA, EL COMPORTAMIENTO Y LA ROBUSTEZ EN PORCINO/
MICIU-FEDER/Programa Estatal de promoción del talento y su empleabilidad en I+D+I/RYC2019-027244-I/ES/Metagenomics and integrative biology tools to improve sustainable livestock systems/
MINECO/Programa Estatal de fomento de la investigación científica y técnica de excelencia/SEV-2015-0533/ES/ /
Programa
Genètica i Millora Animal
Aquest element apareix en la col·lecció o col·leccions següent(s)
- ARTICLES CIENTÍFICS [2340]
Els següents fitxers sobre la llicència estan associats a aquest element:
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/