Mostrar el registro sencillo del ítem

dc.contributor.authorJurado-Ruiz, Federico
dc.contributor.authorRousseau, David
dc.contributor.authorBotía, Juan A.
dc.contributor.authorAranzana, Maria José
dc.contributor.otherProducció Vegetalca
dc.date.accessioned2023-11-17T09:46:24Z
dc.date.available2023-11-17T09:46:24Z
dc.date.issued2023-11-03
dc.identifier.citationJurado-Ruiz, Federico, David Rousseau, Juan A. Botía, and María José Aranzana. 2023. “GenoDrawing: An Autoencoder Framework for Image Prediction from SNP Markers.” Plant Phenomics 5 (January). doi:10.34133/plantphenomics.0113.ca
dc.identifier.issn2643-6515ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/2500
dc.description.abstractAdvancements in genome sequencing have facilitated whole genome characterization of numerous plant species, providing an abundance of genotypic data for genomic analysis. Genomic selection and neural networks, particularly deep learning, have been developed to predict complex traits from dense genotypic data. Autoencoders, a neural network model to extract features from images in an unsupervised manner, has proven to be useful for plant phenotyping. This study introduces an autoencoder framework, GenoDrawing, for predicting and retrieving apple images from a low-depth single nucleotide polymorphism (SNP) array, potentially useful in predicting traits that are difficult to define. GenoDrawing demonstrated proficiency in its task while using a small dataset of shape-related SNPs, and multiple experiments were conducted to evaluate the impact of SNP selection and shape relation. Results indicated that the correct relationship of SNPs with visual traits had a significant impact on the generated images, consistent with biological interpretation. While using significant SNPs is crucial, incorporating additional, unrelated SNPs results in performance degradation for simple NN architectures that cannot easily identify the most important inputs. The proposed GenoDrawing method is a practical framework for exploring genomic prediction in fruit tree phenotyping, particularly beneficial for small to medium breeding companies to predict economically significant heritable traits. Although GenoDrawing has limitations, it sets the groundwork for future research in image prediction from genomic markers. Future studies should focus on using stronger models for image reproduction, SNP information extraction, and improved dataset balance in terms of shape for more precise outcomes.ca
dc.format.extent9ca
dc.language.isoengca
dc.publisherAmerican Association for the Advancement of Science; Nanjing Agricultural Universityca
dc.relation.ispartofPlant Phenomicsca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleGenoDrawing: An Autoencoder Framework for Image Prediction from SNP Markersca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.relation.projectIDMICINN/Programa Estatal para impulsar la investigación científico-técnica y su transferencia/PID2021-128885OB-I00/ES/ /ca
dc.relation.projectIDEC/H2020/817970/EU/INnovations in plant VarIety Testing in Europe to foster the introduction of new varieties better adapted to varying biotic and abiotic conditions and to more sustainable crop management practices/INVITEca
dc.relation.projectIDMINECO/Programa Estatal de fomento de la investigación científica y técnica de excelencia/SEV-2015-0533/ES/ /ca
dc.relation.projectIDMICIU/Programa Estatal de generación del conocimiento y fortalecimiento científico y tecnológico del sistema I+D+I/CEX2019-000902-S/ES/ /ca
dc.relation.projectIDFEDER/ / /EU/ /ca
dc.subject.udc633ca
dc.identifier.doihttps://doi.org/10.34133/plantphenomics.0113ca
dc.contributor.groupGenòmica i Biotecnologiaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir