Mostrar el registro sencillo del ítem

dc.contributor.authorMishra, Puneet
dc.contributor.authorFont i Furnols, Maria
dc.contributor.otherIndústries Alimentàriesca
dc.date.accessioned2024-09-27T09:56:18Z
dc.date.available2024-09-27T09:56:18Z
dc.date.issued2024-07-31
dc.identifier.citationMishra, Puneet, and Maria Font‐i‐Furnols. 2024. “X‐Ray computed tomography meets robust chemometric latent space modeling for lean meat percentage prediction in pig carcasses”. Journal of Chemometrics. doi:10.1002/cem.3591.ca
dc.identifier.issn0886-9383ca
dc.identifier.urihttp://hdl.handle.net/20.500.12327/3315
dc.description.abstractThis study presents a case of processing X-ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi-collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X-ray CT data and robust PLS regression. This method is applicable to X-ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.ca
dc.format.extent7ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofJournal of Chemometricsca
dc.rightsAttribution 4.0 Internationalca
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleX-Ray computed tomography meets robust chemometric latent space modeling for lean meat percentage prediction in pig carcassesca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc663/664ca
dc.identifier.doihttps://doi.org/10.1002/cem.3591ca
dc.contributor.groupQualitat i Tecnologia Alimentàriaca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir